Researchers solve the mystery of nanowire breakage

Sep 12, 2012
Researchers solve the mystery of nanowire breakage
Examples of failure in four different lengths of nanowire as a result of tensile stress. Only nanowire sections close to the fracture are shown. A short (188 nanometer (nm)) nanowire fails through gradual, ductile deformation (top). A long (1,503 nm) nanowire fails abruptly through a brittle or localized shear failure (bottom). Credit: 2012 American Chemical Society

Most materials will break when a force is applied to an imperfection in their structure—such as a notch or dislocation. The behavior of these imperfections, and the resulting breakage, differ markedly between small structures, such as nanowires, and larger, bulk materials. However, scientists lacked complete understanding of the precise mechanics of nanowire breakages, owing in part to inconsistent behavior in experiments. These inconsistencies are now resolved thanks to numerical simulations by Zhaoxuan Wu and his co-workers at the A*STAR Institute for High Performance Computing, Singapore, and collaborators in the US.

The researchers focused on metal with a so-called 'face-centered cubic crystal structure' because they exhibit two different failure modes. Previous experiments by other groups showed that these nanowires can break as the result of a ductile process, in which a narrow neck is formed smoothly and continuously before failure. Other experiments showed that the failure was caused by a brittle fracture, which happened suddenly. To complicate matters further, atom-scale simulations of these experiments predicted that only ductile necking should be occurring.

Wu and co-workers approached the problem by searching for a set of nanowire parameters that they could use to predict the type of failure. They used molecular dynamics software to simulate a series of cylindrical copper nanowires with a diameter of 20 nanometers and lengths ranging between 188 nanometers and 1,503 nanometers. They 'cut' a notch of 0.5 nanometers into the nanowire surface, which served as an initial deformation, and then applied tensile stress along the nanowire's long axis.

These simulations predicted that long nanowires were brittle and would fail abruptly, while short nanowires less than 1,500 in length were ductile and would exhibit a smooth deformation before failure. In other words, says Wu, they "fail gracefully". Previous nanowire simulations failed to identify these two regimes because the nanowire lengths considered were too short. The difference in behavior results from the fact that, for a given strain, long nanowires store a greater quantity of elastic energy than shorter wires.

This insight allowed Wu and co-workers to derive a simple expression for the length at which nanowires switch between modes. Both this expression, and the full simulation results, matched experimental data well. The results, says Wu, resolve an outstanding scientific issue, and provide a basic engineering principle for the design of nanoscale mechanical systems. Whether the model applies to nanowires with very small diameters, where classical plasticity effects begin to be lost, remains to be tested.

Explore further: A nanosized hydrogen generator

More information: Wu, Z., Zhang, Y.-W., Jhon, M. H., Gao, H. & Srolovitz, D. J. Nanowire failure: long = brittle and short = ductile. Nano Letters 12, 910–914 (2012).

add to favorites email to friend print save as pdf

Related Stories

Tiny wires change behavior at nanoscale

Aug 29, 2011

Thin gold wires often used in high-end electronic applications are wonderfully flexible as well as conductive. But those qualities don't necessarily apply to the same wires at the nanoscale.

ORNL microscopy explores nanowires' weakest link

Feb 13, 2012

Individual atoms can make or break electronic properties in one of the world's smallest known conductors—quantum nanowires. Microscopic analysis at the Department of Energy's Oak Ridge National Laboratory ...

Materials science: Perfecting the defect

May 03, 2012

Strong metals have a tendency to be less ductile — unless the metal happens to be a peculiar form of copper known as nanotwinned copper. The crystal structure of nanotwinned copper exhibits many closely-spaced ...

Recommended for you

A nanosized hydrogen generator

Sep 20, 2014

( —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

User comments : 0