Mutation breaks HIV's resistance to drugs

Sep 13, 2012

The human immunodeficiency virus (HIV) can contain dozens of different mutations, called polymorphisms. In a recent study an international team of researchers, including MU scientists, found that one of those mutations, called 172K, made certain forms of the virus more susceptible to treatment. Soon, doctors will be able to use this knowledge to improve the drug regiment they prescribe to HIV-infected individuals.

"The 172K polymorphism makes certain forms of HIV less resistant to drugs," said Stefan Sarafianos, corresponding author of the study and researcher at MU's Bond Life Sciences Center. "172K doesn't affect the virus' normal activities. In some varieties of HIV that have developed resistance to drugs, when the 172K mutation is present, resistance to two classes of anti- is suppressed. We estimate up to 3 percent of carry the 172K polymorphism."

HIV is a retrovirus, meaning it uses an enzyme called reverse transcriptase to create copies of its own . These copies are inserted into the victim's own genes where the virus highjacks the host's in order to reproduce itself. Two classes of drugs, nucleoside (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), can stop this process in its tracks.

However, some HIV strains have developed resistance to NRTIs and NNRTIs. The 172K polymorphism suppresses this resistance and allows both classes of drugs to fight HIV more efficiently. The mutation is believed to be the first of its kind that blocks resistance to two families of drugs.

"Clinical doctors use a database of HIV mutations and the drugs they are susceptible to when they prescribe treatments to an HIV-infected patient," Sarafianos said. "Our finding will be integrated into this database. Once that happens, when doctors learn that their patients have HIV strains that carry the 172K polymorphism, they will know that the infections can be fought better with NRTIs and NNRTIs."

One of Sarafianos' colleagues at the AIDS Clinical Center in Japan found the 172K by accident. The mutation was first discovered in a patient, and the researchers were able to recreate it in the laboratory.

Explore further: Protein secrets of Ebola virus

More information: The study "HIV-1 Reverse Transcriptase Polymorphism 172K Suppresses the Effect of Clinically Relevant Drug Resistance Mutations to Both Nucleoside and Nonnucleoside RT Inhibitors," was published in the Journal of Biological Chemistry.

Related Stories

New discoveries make it harder for HIV to hide from drugs

Dec 15, 2010

The virus that causes AIDS is chameleon-like in its replication. As HIV copies itself in humans, it constantly mutates into forms that can evade even the best cocktail of current therapies. Understanding exactly how HIV cells ...

Study: Cells have a natural defense against HIV

Mar 14, 2006

Scientists here have discovered a previously unknown mechanism that cells use to fight off the human immunodeficiency virus (HIV), the cause of AIDS. The findings indicate that two proteins that normally help repair cellular ...

Recommended for you

Chemical biologists find new halogenation enzyme

16 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

22 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

22 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

Sep 15, 2014

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Osiris1
not rated yet Sep 13, 2012
see if this mutation can be inserted in any HIV and be made dominant.