'Mining' for metals using Nature's machines

Sep 21, 2012

Researchers in the University' s Green Chemistry Centre of Excellence and the Centre for Novel Agricultural Products (CNAP) aim to develop ways to extract platinum group metals (PGM) discarded during mine processing which might then be used in catalysis. The research will investigate "phyto-mining," which involves growing plants on mine waste materials to sponge up PGM into their cellular structure.

Initial studies show that plant cells used to phyto-mine PGM can be turned into materials for a variety of industrial applications – the one in most demand being for control.

The $1.4 million PHYTOCAT project is supported by the G8 Research Councils Initiative on Multilateral Research Funding. The team is led by the University of York in the UK with support from Yale University, the University of British Columbia and Massey University in New Zealand.

Professor James Clark, the Director of the Centre of Excellence at York, says: "We are looking at ways of turning these residual metals into their catalytically active form using the plants to extract them from the mine waste. The plant is heated in a controlled way with the result that the is embedded in a nano-form in the carbonised plant.

"The trick is to control the decomposition of the plant in a way which keeps the metal in its nano-particulate or catalytically active form. Catalysis is being used more and more in industrial processes and particularly for emission control because of the demand for cleaners cars, so 'phyto-mining' could provide a sustainable supply of catalytically active metals."

For PGM phyto-mining, the researchers will investigate plants known as hyperaccumulators which include about 400 species from more than 40 . Plants such as willow, corn and mustard have evolved a resistance to specific metals and can accumulate relatively large amounts of these metals, which once absorbed into the plants' form nano-scale clusters than can then be used directly as a catalyst.

Professor Neil Bruce, of CNAP, added: "The ability of plants to extract PGMs from soil and redeposit the metal as nanoparticles in cells is remarkable. This project will allow us to investigate the mechanisms behind this process and provide a green method for extracting metals from mine tailings that are currently uneconomical to recover."

David Delpy, Chief Executive of EPSRC, said: "This research has exciting possibilities. The novel use of plants to retrieve precious metals at the nanoscale involves research that crosses the boundaries of many scientific disciplines and could contribute significantly to our work in the area of catalysis."

Explore further: New synthesis method may shape future of nanostructures, clean energy

add to favorites email to friend print save as pdf

Related Stories

Metal-mining bacteria are green chemists

Sep 02, 2010

Microbes could soon be used to convert metallic wastes into high-value catalysts for generating clean energy, say scientists writing in the September issue of Microbiology.

Toxic spill from zinc mine in Peru

Sep 03, 2012

(AP)—Peruvian authorities say wastewater laced with heavy metals from a major zinc mine has spilled into a tributary of the Amazon, contaminating at least six miles of the waterway.

An ideal candidate for sustainable catalysis

Sep 16, 2010

(PhysOrg.com) -- The development of environmentally friendly and efficient catalysts is a major challenge in the field of chemical research, with the focus now being placed on the search for inexpensive metal ...

Recommended for you

Simulations for better transparent oxide layers

Sep 01, 2014

Touchscreens and solar cells rely on special oxide layers. However, errors in the layers' atomic structure impair not only their transparency, but also their conductivity. Using atomic models, Fraunhofer ...

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

User comments : 0