'Mining' for metals using Nature's machines

September 21, 2012

Researchers in the University' s Green Chemistry Centre of Excellence and the Centre for Novel Agricultural Products (CNAP) aim to develop ways to extract platinum group metals (PGM) discarded during mine processing which might then be used in catalysis. The research will investigate "phyto-mining," which involves growing plants on mine waste materials to sponge up PGM into their cellular structure.

Initial studies show that plant cells used to phyto-mine PGM can be turned into materials for a variety of industrial applications – the one in most demand being for control.

The $1.4 million PHYTOCAT project is supported by the G8 Research Councils Initiative on Multilateral Research Funding. The team is led by the University of York in the UK with support from Yale University, the University of British Columbia and Massey University in New Zealand.

Professor James Clark, the Director of the Centre of Excellence at York, says: "We are looking at ways of turning these residual metals into their catalytically active form using the plants to extract them from the mine waste. The plant is heated in a controlled way with the result that the is embedded in a nano-form in the carbonised plant.

"The trick is to control the decomposition of the plant in a way which keeps the metal in its nano-particulate or catalytically active form. Catalysis is being used more and more in industrial processes and particularly for emission control because of the demand for cleaners cars, so 'phyto-mining' could provide a sustainable supply of catalytically active metals."

For PGM phyto-mining, the researchers will investigate plants known as hyperaccumulators which include about 400 species from more than 40 . Plants such as willow, corn and mustard have evolved a resistance to specific metals and can accumulate relatively large amounts of these metals, which once absorbed into the plants' form nano-scale clusters than can then be used directly as a catalyst.

Professor Neil Bruce, of CNAP, added: "The ability of plants to extract PGMs from soil and redeposit the metal as nanoparticles in cells is remarkable. This project will allow us to investigate the mechanisms behind this process and provide a green method for extracting metals from mine tailings that are currently uneconomical to recover."

David Delpy, Chief Executive of EPSRC, said: "This research has exciting possibilities. The novel use of plants to retrieve precious metals at the nanoscale involves research that crosses the boundaries of many scientific disciplines and could contribute significantly to our work in the area of catalysis."

Explore further: Prairie dogs: influencing the accumulation of metals in plants?

Related Stories

Metal-mining bacteria are green chemists

September 2, 2010

Microbes could soon be used to convert metallic wastes into high-value catalysts for generating clean energy, say scientists writing in the September issue of Microbiology.

An ideal candidate for sustainable catalysis

September 16, 2010

(PhysOrg.com) -- The development of environmentally friendly and efficient catalysts is a major challenge in the field of chemical research, with the focus now being placed on the search for inexpensive metal catalysts. At ...

Toxic spill from zinc mine in Peru

September 3, 2012

(AP)—Peruvian authorities say wastewater laced with heavy metals from a major zinc mine has spilled into a tributary of the Amazon, contaminating at least six miles of the waterway.

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.