Ethanol from plants may become cheaper, thanks to insights into fungus metabolism

Sep 26, 2012
The yeast Scheffersomyces stipitis, used to break down xylose for biofuels, can be cultivated on an industrial scale in fermentation tanks. Credit: iStockphoto.com/ClarkandCompany

Efficient industrial fermentation of the plant sugar called xylose is critical to the cost-effective production of biofuels and other chemicals. However, most microorganisms cannot ferment xylose; and industrial microbiologists have yet to expose the secrets behind the extraordinary success of the current microbial champion of xylose fermentation, the fungus Scheffersomyces stipitis.

Publication of the of S. stipitis five years ago was but the first step towards this elusive goal. Rajagopalan Srinivasan and his co-workers at the A*STAR Institute of Chemical and Engineering Sciences, Singapore, have taken a critical next step by reconciling the annotated DNA sequence of S. stipitis with its biochemistry and physiology. The more holistic view of the metabolism of S. stipitis that emerges from their model suggests rational approaches to both improve the unique metabolic capabilities of S. stipitis and transfer these to other industrially important microbes. "If successful, such initiatives would substantially improve the efficiency with which energy could be extracted from agricultural and forest residues," explains Srinivasan.

Rational engineering of more efficient xylose metabolism has been hindered by the complexity of the metabolic network: mRNA abundance, protein abundance, and metabolite-regulated all contribute to the regulation of metabolism. Perturbation of the metabolic network by modifying the expression of just one or a few genes usually has only minimal effects and often has unanticipated .

To identify the most promising approaches to optimize xylose fermentation, Srinivasan and his co-workers combined information from the annotated , pathway databases, and published studies with their own data, which they collected by determining the macromolecular composition of S. stipitis cells under various growth conditions. They used all of this information to generate a that represents the relationships between 814 genes, 971 metabolites and 1,371 reactions.

In silico analysis of the model predicted that xylose-driven growth of S. stipitis is restrained by a limited capacity to regenerate a nucleotide cofactor when the oxygen supply is limited. The researchers validated this prediction experimentally and proposed specific strategies to overcome the bottleneck. The model also provided insights into the roles of super-complexes in channeling the flow of electrons during mitochondrial respiration. 

Incorporation of thermodynamic constraints, enzyme kinetics information, and high-throughput transcriptomic, proteomic and metabolomic data will enhance the predictive capacity of the model. "Refinement of our metabolic model will help metabolic engineers to propose other testable strategies to increase the efficiency of xylose fermentation in S. stipitis and other industrial microbes," Srinivasan says.

Explore further: New patenting guidelines are needed for biotechnology

More information: Balagurunathan, B., Jonnalagadda, S., Tan, L. & Srinivasan, R. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Microbial Cell Factories 11, 27 (2012). dx.doi.org/10.1186/1475-2859-11-27

add to favorites email to friend print save as pdf

Related Stories

Super-fermenting fungus genome sequenced

Mar 05, 2007

On the road to making biofuels more economically competitive with fossil fuels, there are significant potholes to negotiate. For cellulosic ethanol production, one major detour has being addressed with the characterization ...

Novel gene increases yeast's appetite for plant sugars

Jul 25, 2011

For thousands of years, bakers and brewers have relied on yeast to convert sugar into alcohol and carbon dioxide. Yet, University of Wisconsin-Madison researchers eager to harness this talent for brewing biofuels have found ...

Recommended for you

New alfalfa variety resists ravenous local pest

9 hours ago

(Phys.org) —Cornell plant breeders have released a new alfalfa variety with some resistance against the alfalfa snout beetle, which has ravaged alfalfa fields in nine northern New York counties and across ...

New patenting guidelines are needed for biotechnology

Apr 22, 2014

Biotechnology scientists must be aware of the broad patent landscape and push for new patent and licensing guidelines, according to a new paper from Rice University's Baker Institute for Public Policy.

Rainbow trout genome sequenced

Apr 22, 2014

Using fish bred at Washington State University, an international team of researchers has mapped the genetic profile of the rainbow trout, a versatile salmonid whose relatively recent genetic history opens ...

User comments : 0

More news stories