Ethanol from plants may become cheaper, thanks to insights into fungus metabolism

September 26, 2012
The yeast Scheffersomyces stipitis, used to break down xylose for biofuels, can be cultivated on an industrial scale in fermentation tanks. Credit: iStockphoto.com/ClarkandCompany

Efficient industrial fermentation of the plant sugar called xylose is critical to the cost-effective production of biofuels and other chemicals. However, most microorganisms cannot ferment xylose; and industrial microbiologists have yet to expose the secrets behind the extraordinary success of the current microbial champion of xylose fermentation, the fungus Scheffersomyces stipitis.

Publication of the of S. stipitis five years ago was but the first step towards this elusive goal. Rajagopalan Srinivasan and his co-workers at the A*STAR Institute of Chemical and Engineering Sciences, Singapore, have taken a critical next step by reconciling the annotated DNA sequence of S. stipitis with its biochemistry and physiology. The more holistic view of the metabolism of S. stipitis that emerges from their model suggests rational approaches to both improve the unique metabolic capabilities of S. stipitis and transfer these to other industrially important microbes. "If successful, such initiatives would substantially improve the efficiency with which energy could be extracted from agricultural and forest residues," explains Srinivasan.

Rational engineering of more efficient xylose metabolism has been hindered by the complexity of the metabolic network: mRNA abundance, protein abundance, and metabolite-regulated all contribute to the regulation of metabolism. Perturbation of the metabolic network by modifying the expression of just one or a few genes usually has only minimal effects and often has unanticipated .

To identify the most promising approaches to optimize xylose fermentation, Srinivasan and his co-workers combined information from the annotated , pathway databases, and published studies with their own data, which they collected by determining the macromolecular composition of S. stipitis cells under various growth conditions. They used all of this information to generate a that represents the relationships between 814 genes, 971 metabolites and 1,371 reactions.

In silico analysis of the model predicted that xylose-driven growth of S. stipitis is restrained by a limited capacity to regenerate a nucleotide cofactor when the oxygen supply is limited. The researchers validated this prediction experimentally and proposed specific strategies to overcome the bottleneck. The model also provided insights into the roles of super-complexes in channeling the flow of electrons during mitochondrial respiration. 

Incorporation of thermodynamic constraints, enzyme kinetics information, and high-throughput transcriptomic, proteomic and metabolomic data will enhance the predictive capacity of the model. "Refinement of our metabolic model will help metabolic engineers to propose other testable strategies to increase the efficiency of xylose fermentation in S. stipitis and other industrial microbes," Srinivasan says.

Explore further: Super-fermenting fungus genome sequenced

More information: Balagurunathan, B., Jonnalagadda, S., Tan, L. & Srinivasan, R. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Microbial Cell Factories 11, 27 (2012). dx.doi.org/10.1186/1475-2859-11-27

Related Stories

Super-fermenting fungus genome sequenced

March 5, 2007

On the road to making biofuels more economically competitive with fossil fuels, there are significant potholes to negotiate. For cellulosic ethanol production, one major detour has being addressed with the characterization ...

Novel gene increases yeast's appetite for plant sugars

July 25, 2011

For thousands of years, bakers and brewers have relied on yeast to convert sugar into alcohol and carbon dioxide. Yet, University of Wisconsin-Madison researchers eager to harness this talent for brewing biofuels have found ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.