Ecosystems cope with stress more effectively the greater the biodiversity

September 5, 2012

Ecosystems with a high degree of biodiversity can cope with more stress, such as higher temperatures or increasing salt concentrations, than those with less biodiversity. They can also maintain their services for longer, as botanists and ecologists from the universities of Zurich and Göttingen have discovered. Their study provides the first evidence of the relationship between stress intensity and ecosystem functioning.

Higher and increasing salt concentrations are stress factors that many ecosystems face today in the wake of climate change. However, do all ecosystems react to stress in the same way and what impact does stress have on , such as biomass production? and ecologists from the universities of Zurich and Göttingen demonstrate that a high level of biodiversity aids .

Higher number of species leads to greater stress resistance

The scientists studied a total of 64 species of single-celled from the SAG Culture Collection of Algae in Göttingen. These are at the bottom of the food chain and absorb environmentally harmful CO2 via photosynthesis. "The more species of microalgae there are in a system, the more robust the system is under moderate stress compared to those with fewer species," says first author Bastian Steudel, explaining one of the results. Systems with a higher number of species can thus keep their biomass production stable for longer than those with less biodiversity.

In all, the researchers studied six different intensities of two stress gradients. In the case of very high intensities, the positive effects of biodiversity decreased or ceased altogether. However, increasing stress in systems with few species had a considerably more negative impact than in those with high biodiversity levels. "The study shows that a high degree of biodiversity under stress is especially important to maintain biomass production," says Steudel's PhD supervisor Michael Kessler, summing up the significance of the research project.

Explore further: Stability and Diversity in Ecosystems

More information: Bastian Steudel, Andy Hector, Thomas Friedl, Christian Löfke, Maike Lorenz, Moritz Wesche, Michael Kessler. Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecology Letters. 4 September, 2012. doi: 10.1111/j.1461-0248.2012.01863.x

Related Stories

Stability and Diversity in Ecosystems

August 3, 2007

Is biodiversity important for predicting human impacts on ecosystems? If diverse ecosystems were as a consequence more stable, the answer would be yes.

Microbial societies do not like oligarchy

March 12, 2009

Bacteria and humans tend to live in highly diverse and complex communities. Most interestingly, bacteria and humans appear to prefer to live in a democracy. This is the basic message of the paper entitled "Initial community ...

The grass is always greener

August 19, 2011

(PhysOrg.com) -- Recent study of grasslands shows that species variety more important to ecosystem services than previously thought.

Common fungicide wreaks havoc on freshwater ecosystems

May 16, 2012

Chlorothalonil, one of the world's most common fungicides used pervasively on food crops and golf courses, was lethal to a wide variety of freshwater organisms in a new study, University of South Florida researchers said ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

New insights into the production of antibiotics by bacteria

July 31, 2015

Bacteria use antibiotics as a weapon and even produce more antibiotics if there are competing strains nearby. This is a fundamental insight that can help find new antibiotics. Leiden scientists Daniel Rozen and Gilles van ...

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.