Researchers track nanoparticle dynamics in three dimensions

Aug 03, 2012

(Phys.org) -- Researchers from the NIST Center for Nanoscale Science and Technology have used three-dimensional single-particle tracking to measure the dynamic behavior of individual nanoparticles adsorbed at the surface of micrometer-scale oil droplets in water.

The results revealed that the diffusion of the particles depends on their size, with smaller particles diffusing much more slowly than expected. A detailed understanding of how colloidal nanoparticles interact with interfaces is essential for designing them for specific applications in fields ranging from drug delivery to and recovery. The researchers developed a feedback control system with real-time control electronics to actuate a piezoelectric stage, moving the sample in order to lock the moving nanoparticle in the observation volume of an .

The technique, which triggers off of photons collected in situ from an individual fluorescing nanoparticle, provides high resolution three-dimensional position information with excellent and with the added benefit of sensitivity to chemical activity. Particles ranging in size from 20 nm to 2000 nm were followed in real-time as they diffused freely in water and over the curved surfaces of variously-sized . As expected, the diffusion coefficients scaled with for the freely diffusing particles. However, there was a significant and unexpected decrease in the diffusion coefficients for smaller (< 200 nm) nanoparticles when they diffused at the oil-water interface.

Furthermore, for a given particle size, the researchers observed a large spread in the diffusion coefficients measured at the interface, while no such effect was observed for the freely diffusing particles. In order to better fit the measurements, the basic model that works well for larger particles diffusing at a fluid-fluid interface needed to be modified to account for line tension (the one-dimensional analogue of ) at the interface between the smaller , the oil, and the water.

The researchers believe that the variability in the diffusion coefficients of the particles adsorbed at the interface is most probably a reflection of subtle variations in the surface chemistry of the particles, suggesting that diffusion measurements may provide a new way to compare particle surface chemistries. Whereas following the dynamics of isolated particles provides many useful insights into their behavior, typical man-made and natural systems are usually far more complex, with heterogeneous fluids, crowded environments, and strong particle-particle interactions.

The researchers believe that using real-time, three-dimensional particle tracking to observe intentionally inserted, single tracer particles may provide an ideal tool to probe complicated fluid systems, such as the interior of cells, or oil/water mixtures trapped inside porous rock.

Explore further: Pinpoint laser heating creates a maelstrom of magnetic nanotextures

More information: Three-dimensional real-time tracking of nanoparticles at an oil–water interface, K. Du, J. A. Liddle, and A. J. Berglund, Langmuir 28, 9181–9188 (2012). pubs.acs.org/doi/abs/10.1021/la300292r

Related Stories

Light touch keeps a grip on delicate nanoparticles

May 03, 2012

(Phys.org) -- Using a refined technique for trapping and manipulating nanoparticles, researchers at the National Institute of Standards and Technology (NIST) have extended the trapped particles' useful life ...

Cosmology in a Petri dish

Jan 26, 2012

Scientists have found that micron-size particles which are trapped at fluid interfaces exhibit a collective dynamic that is subject to seemingly unrelated governing laws. These laws show a smooth transitioning ...

Glowing beacons reveal hidden order in dynamical systems

Oct 19, 2011

A dynamical system in which repeated measurements on a single particle yield the same mean result as a single measurement of the whole ensemble is said to be ergodic. The ergodic theorem expresses a fundamental physical principle, ...

Recommended for you

Chemically driven micro- and nanomotors

Dec 17, 2014

At least since the movie "The Fantastic Voyage" in 1966, in which a submarine is shrunk down and injected into the blood stream of a human, people have been toying with the idea of sending tiny "micromachines" ...

Pyramid nanoscale antennas beam light up and down

Dec 17, 2014

Researchers from FOM Institute AMOLF and Philips Research have designed and fabricated a new type of nanoscale antenna. The new antennas look like pyramids, rather than the more commonly used straight pillars. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.