Nanoparticles Double Their Chances of Getting Into Sticky Situations

February 16, 2009
Nanoparticles Double Their Chances of Getting Into Sticky Situations
Stefan Bon and David Cheung with an image from their paper

(PhysOrg.com) -- Chemistry researchers at the University of Warwick have found that tiny nanoparticles could be twice as likely to stick to the interface of two non mixing liquids than previously believed. This opens up a range of new possibilities for the uses of nanoparticles in living cells, polymer composites, and high-tech foams, gels, and paints. The researchers are also working on ways of further artificially enhancing this new found sticking power.

In a paper entitled "Interaction of nanoparticles with ideal liquid-liquid interfaces" just published in Physical Review Letters the University of Warwick researchers reviewed molecular simulations of the interaction between a non-charged nanoparticle and an "ideal" liquid-liquid interface. They were surprised to find that very small nanoparticles (of around 1 to 2 nanometres) varied considerably in their simulated ability to stick to such interfaces from what was expected in the standard model.

The researchers found that it took up to 50 percent more energy to dislodge the particles from the liquid-liquid interface for the smallest particle sizes. However as the radius of the particles increased this deviation from the standard model gradually faded out.

The researchers, Dr ir Stefan A. F. Bon and Dr David L. Cheung, believe that previous models failed to take into account the action of "capillary waves" in their depiction of the nanoparticles behaviour at the liquid to liquid interfaces.

Dr ir Stefan A. F. Bon said

"This new understanding on the nano-scale gives us much more flexibility in the design of everything from high-tech composite materials, to the use of quantum dots, cell biochemistry, and the manufacture of new "armored" polymer paint particles."

The researchers are now working on ways to build on this newly found natural stickiness of nanoparticles by designing polymer nanoparticles with opposing hydrophobic and hydrophilic surfaces that will bind even more strongly at oil/water liquid interfaces.

Provided by University of Warwick

Explore further: Scientists unlock structure of mTOR, a key cancer cell signaling protein

Related Stories

Wet plasma makes a nano-sized splash

December 12, 2017

Oil and water do not mix, but a KAUST team has exploited the distinct interfaces between these substances to make plasma generation in liquids more efficient. This approach holds promise for high-yield synthesis of nanomaterials ...

Creating surfaces that repel water and control its flow

December 13, 2017

To prevent water and ice from making our shoes soggy, frosting our car windows and weighing down power lines with icicles, scientists have been exploring new coatings that can repel water. Now one team has developed a way ...

How suspended particles influence liquid flow dynamics

November 29, 2017

One of the most prominent publications in physics, Physical Review X, accepted an article by Sangwoo Shin, a University of Hawaiʻi at Mānoa assistant professor in mechanical engineering. The article is titled Accumulation ...

Recommended for you

Engineers create plants that glow

December 13, 2017

Imagine that instead of switching on a lamp when it gets dark, you could read by the light of a glowing plant on your desk.

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.