Research team develops high performance flexible solid state battery

August 6, 2012
This shows a blue LED emission operated by flexible solid state battery. Credit: Korea Advanced Institute of Science and Technology

The Korean team of Professor Keon Jae Lee from the Department of Materials Science and Engineering, KAIST has developed a high performance flexible all-solid-state battery, an essential energy source for flexible displays.

The technological advance of thin and light flexible display has encouraged the development of flexible batteries with a high and thermal stability. Although rechargeable lithium-ion batteries (LIB) have been regarded as a strong candidate for a high-performance flexible energy source, compliant electrodes for bendable LIBs are restricted to only a few materials (e.g., organic materials or nano/micro structured inorganic materials mixed with polymer binders). The performance of LIBs has not been sufficient either, thereby difficult to apply to flexible consumer electronics including rollable displays.

In addition, lithium used as a cathode electrode have to be treated in high temperature (e.g., ~ 700 degrees for lithium ). However, it is not possible to anneal the metal oxides, an active material, at this high temperature on substrates.

This video is not supported by your browser at this time.
Flexible battery turns on blue LED and maintains voltage during bending/unbending conditions.

Recently, Professor Lee's research team has developed a high performance flexible LIB structured with high density inorganic thin films by using a universal transfer approach. The thin film LIB fabricated on a mica substrate with high annealing temperature is transferred onto polymer substrates through a simple physical delamination of sacrificial substrates.

Professor Lee said, "The advent of a high performance flexible thin film battery will accelerate the development of next-generation fully flexible electronic systems in combination with existing flexible components such as display, memory, and LED."

The research team is currently investigating a laser lift-off technology to facilitate the mass production of flexible LIBs and 3D stacking structures to enhance charge density of batteries.

Explore further: OLED Displays on Flexible Metallic Substrates

More information: See paper in Nano Letters: "Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems"

Related Stories

OLED Displays on Flexible Metallic Substrates

June 23, 2004

Universal Display Corporation, a leading developer of organic light emitting device (OLED)technologies for flat panel displays, lighting and other opto-electronic applications, and Palo Alto Research Center (PARC), a subsidiary ...

Cancer detection from an implantable, flexible LED

September 19, 2011

Can a flexible LED conformably placed on the human heart, situated on the corrugated surface of the human brain, or rolled upon the blood vessels, diagnose or even treat various diseases? These things might be a reality in ...

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.