Research team develops high performance flexible solid state battery

Aug 06, 2012
This shows a blue LED emission operated by flexible solid state battery. Credit: Korea Advanced Institute of Science and Technology

The Korean team of Professor Keon Jae Lee from the Department of Materials Science and Engineering, KAIST has developed a high performance flexible all-solid-state battery, an essential energy source for flexible displays.

The technological advance of thin and light flexible display has encouraged the development of flexible batteries with a high and thermal stability. Although rechargeable lithium-ion batteries (LIB) have been regarded as a strong candidate for a high-performance flexible energy source, compliant electrodes for bendable LIBs are restricted to only a few materials (e.g., organic materials or nano/micro structured inorganic materials mixed with polymer binders). The performance of LIBs has not been sufficient either, thereby difficult to apply to flexible consumer electronics including rollable displays.

In addition, lithium used as a cathode electrode have to be treated in high temperature (e.g., ~ 700 degrees for lithium ). However, it is not possible to anneal the metal oxides, an active material, at this high temperature on substrates.

This video is not supported by your browser at this time.
Flexible battery turns on blue LED and maintains voltage during bending/unbending conditions.

Recently, Professor Lee's research team has developed a high performance flexible LIB structured with high density inorganic thin films by using a universal transfer approach. The thin film LIB fabricated on a mica substrate with high annealing temperature is transferred onto polymer substrates through a simple physical delamination of sacrificial substrates.

Professor Lee said, "The advent of a high performance flexible thin film battery will accelerate the development of next-generation fully flexible electronic systems in combination with existing flexible components such as display, memory, and LED."

The research team is currently investigating a laser lift-off technology to facilitate the mass production of flexible LIBs and 3D stacking structures to enhance charge density of batteries.

Explore further: In-situ nanoindentation study of phase transformation in magnetic shape memory alloys

More information: See paper in Nano Letters: "Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems"

add to favorites email to friend print save as pdf

Related Stories

Cancer detection from an implantable, flexible LED

Sep 19, 2011

Can a flexible LED conformably placed on the human heart, situated on the corrugated surface of the human brain, or rolled upon the blood vessels, diagnose or even treat various diseases? These things might ...

OLED Displays on Flexible Metallic Substrates

Jun 23, 2004

Universal Display Corporation, a leading developer of organic light emitting device (OLED)technologies for flat panel displays, lighting and other opto-electronic applications, and Palo Alto Research Center (PARC), a subsidiary ...

Recommended for you

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Poll: Big Bang a big question for most Americans

Few Americans question that smoking causes cancer. But they have more skepticism than confidence in global warming, the age of the Earth and evolution and have the most trouble believing a Big Bang created the universe 13.8 ...