Molecule reorganises itself for new functions

Aug 22, 2012

(Phys.org) -- The discovery of a synthetic molecule, made up of 60 simple components that are able to reorganise themselves to produce new functions, will lead to better understanding of nature's processes.

The incredibly complex structure of the pentagonal prismatic molecule was discovered when researchers working at The University of Queensland (UQ), The University of Cambridge, and Randolph-Macon College in the USA, formed the structure by transforming a tetrahedral molecule into a second structure - a barrel-like pentagonal prism.

Understanding the structure of which are able to reorganise themselves is important as it helps scientists to understand natural processes in such as which are assembled from small parts.

This video is not supported by your browser at this time.
A video of the product molecule

The finding was published this month in the journal Nature Chemistry and the researchers have produced a movie showing the molecule and its 60 simple components to assist readers to understand its complexity.

In synthesising the molecule, the researchers used a technique known as “self-assembly”, which regulates many of the and functional components in biological systems like DNA, to prepare a molecular tetrahedron from twenty-two simple building blocks.

The building blocks employed were then chemically programmed to spontaneously react together to form the desired molecule.

UQ's School of & Molecular Biosciences Dr Jack Clegg said in addition of a chemical template, the tetrahedral molecule was reconfigured into a new barrel-like structure composed of an impressive 60 smaller molecules.

“Up until now we've only be able to do this on a very basic level,” Dr Clegg said.

"We've succeeded in preparing and characterising a new chemical system that is capable of structural reconstitution on receipt of one molecular signal to create a tight binding pocket for a chloride anion."

Explore further: Scientists learn to control reactions with the shape of a rare-earth catalyst

More information: Nature Chemistry ( DOI:10.1038/NCHEM.1407 , published online 5 August 2012).

Related Stories

Building site for molecular complexes

May 23, 2012

Often the sum is greater than its parts. Using an atomic force microscope as a “crane”, Ludwig Maximilian University of Munich researchers have succeeded in bringing two biomolecules together to form an active complex ...

Scientists build a better DNA molecule

May 27, 2008

Building faultless objects from faulty components may seem like alchemy. Yet scientists from the Weizmann Institute’s Computer Science and Applied Mathematics, and Biological Chemistry Departments have achieved just that, ...

Building blocks of the future

Apr 06, 2010

(PhysOrg.com) -- Professor Varinder Aggarwal is no ordinary builder. He and his team in the School of Chemistry have just discovered a new technique that could hasten the development of new drugs for today’s ...

Recommended for you

Breaking benzene

Aug 27, 2014

Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon-carbon bonds in these compounds plays an important role in the production of fuels and valuable ...

User comments : 0