Building site for molecular complexes

May 23, 2012, Ludwig Maximilian University of Munich

Often the sum is greater than its parts. Using an atomic force microscope as a “crane”, Ludwig Maximilian University of Munich researchers have succeeded in bringing two biomolecules together to form an active complex – with nanometer precision and built-in quality control.

The business end of the atomic force microscope (AFM) is its needle-sharp tip. It can be used to pick single molecules from a substrate and move them to specific positions with the precision of a few nanometers. This “single-molecule cut-and-paste” procedure was developed by LMU physicist Professor Hermann Gaub, and he and his colleagues have now used it to assemble a functional molecular complex from inactive, single-molecule building blocks.

They built the complex from two short strands of RNA, picking one from a depot with the AFM, and placing it close to the second strand deposited elsewhere on the substrate. When the two RNA segments come into contact, they spontaneously form what is called an “aptamer”, a three-dimensional binding pocket for a target molecule – in this case the fluorescent dye malachite green. The binding interaction amplifies the fluorescence emitted by the target more than 1000-fold - and signals that the two parts of the aptamer have assembled correctly.

 “The important thing is that we have precise mechanical control over the assembly process,” says lead author Mathias Strackharn. “When we see the malachite-green signal in the fluorescence microscope, we know that the aptamer has been successfully reconstituted.” The researchers are now in a position to construct other systems whose natural function depends on the configuration of their molecular components. This will enable them to dissect how interactions between their parts mediate the functions of molecular complexes.

Explore further: Universal detector made of DNA building blocks

More information: Nanoletters, 9.5:

Related Stories

Universal detector made of DNA building blocks

March 30, 2011

( -- A method for detecting such diverse substances as antibiotics, narcotics and explosives - a universal detector, so to speak - has been developed by German researchers at the Max Planck Institute for Polymer ...

Taking a closer look at cancer

September 12, 2011

( -- Using a unique combination of biology and physics techniques, Swinburne University of Technology researchers are improving our understanding of cancer on a microscopic scale.

Recommended for you

Elephant and cow manure for making paper sustainably

March 21, 2018

It's likely not the first thing you think of when you see elephant dung, but this material turns out to be an excellent source of cellulose for paper manufacturing in countries where trees are scarce, scientists report. And ...

Smallest ever sieve separates atoms

March 20, 2018

Researchers at The University of Manchester have discovered that the naturally occurring gaps between individual layers of two-dimensional materials can be used as a sieve to separate different atoms.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.