Graphene-based materials kill bacteria through one of two possible mechanisms

Aug 29, 2012
Functional materials--two ways to kill
Graphene oxide (top) kills bacterial cells through cell-wrapping, while reduced graphene oxide (bottom) kills bacterial cells through cell-trapping. © 2012 ACS

The discovery of graphene has brought much excitement to the nanotechnology community. Much of this excitement is due to the possibility of deriving graphene-based materials with applications in electronics, energy storage, sensing and biomedical devices. Despite the potential, however, there is a real concern that graphene-based materials may have deleterious effects on human health and the natural environment.

One particularly interesting aspect of this subject is the toxic effects of graphene-based materials on the of bacteria. For this very reason, Jun Wei at the A*STAR Singapore Institute of Manufacturing Technology and his co-workers have now compared the of graphite, graphite oxide, graphene oxide and reduced graphene oxide using the model . They showed that the two graphene-based materials kill substantially more bacteria than two graphite-based materials—with graphene oxide being the top performer.

Interestingly, graphene oxide particles were the smallest of all the four graphene materials as measured by dynamic light scattering. Wei and co-workers believe that particles of reduced graphene oxide were larger because they aggregated both laterally and in three dimensions.

In fact, the size of the particles could well be the key to why graphene oxide is so deadly to bacteria. When the researchers studied the affected cells using , they saw that most of the E.coli cells were individually wrapped by layers of graphene oxide. In contrast, E. coli cells were usually embedded in the larger reduced-graphene-oxide aggregates (see image). A similar cell-trapping mechanism was operational in the graphite-based materials.

So why does cell-wrapping kill more cells than cell-trapping? The researchers believe that the direct contact of cell surface with graphene causes membrane stress and irreversible damage.

Wei and co-workers also investigated chemical mechanisms by which the materials could disrupt and kill bacteria. They found that the oxidation of glutathione, an important cellular antioxidant, occurred on exposure to graphite and reduced . "It might be that these structures act as conducting bridges extracting electrons from glutathione molecules and releasing them into the external environment," says Wei.

Intriguingly, while the effect of the membrane-disrupting mechanisms dies away after four hours of incubation, the oxidation mechanism shows only minor changes.

"With the knowledge obtained in this study, we envision that physicochemical properties of graphene-based materials, such as the density of functional groups, size and conductivity can be better tailored to either reduce environmental risks or increase application potential," says Wei.

Explore further: Researchers make major advances in dye sensitized solar cells

More information: Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J. et al. Antibacterial activity of graphite, graphite oxide, graphene oxide and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011). Article

Related Stories

Scientists produce graphene using microorganisms

Mar 22, 2012

The Graphene Research Group at Toyohashi University of Technology (Japan) reports on the synthesis of graphene by reducing graphene oxide using microorganisms extracted from a local river.

Seeing an atomic thickness

May 19, 2011

Scientists from NPL, in collaboration with Linkoping University, Sweden, have shown that regions of graphene of different thickness can be easily identified in ambient conditions using Electrostatic Force ...

New technique controls graphite to graphene transition

Jul 02, 2012

( -- University of Arkansas physicists have found a way to systematically study and control the transition of graphite, the “lead” found in pencils, to graphene, one of the strongest, lightest ...

Recommended for you

Nanomaterial outsmarts ions

Apr 22, 2014

Ions are an essential tool in chip manufacturing, but these electrically charged atoms can also be used to produce nano-sieves with homogeneously distributed pores. A particularly large number of electrons, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Aug 29, 2012
What about occlusion?
Wrapping will form a proximal physical barrier to the assimilation of nutrients and to the expulsion of wastes, whereas trapping is less proximal, and thus less effective at this.
Any cell's health depends directly on the efficiency with which both processes can be performed.
The difference is the difference between being locked in a box versus merely being locked in a closet.

More news stories

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...