New technique controls graphite to graphene transition

July 2, 2012
The top three images of graphite are from the experiment and the lower three images were produced through theoretical calculations. The images from left to right show more displacement of the top layer of graphite and its transition to graphene.

(Phys.org) -- University of Arkansas physicists have found a way to systematically study and control the transition of graphite, the “lead” found in pencils, to graphene, one of the strongest, lightest and most conductive materials known, an important step in the process of learning to use this material in modern day technology.

Peng Xu, Paul Thibado, Yurong Yang, Laurent Bellaiche and their colleagues report their findings in the journal Carbon.

at the University of Manchester first isolated graphene, a one atom thick sheet of carbon atoms, by using Scotch tape to lift only the top layer off of the other layers of graphite. Electrons moving through graphite have mass and encounter resistance, but electrons moving through graphene are massless and encounter almost no resistance, which makes graphene an excellent candidate material for future energy needs and for quantum computing for enormous calculations while using little energy.

However, graphene is a new material only discovered in 2004, and many things remain unknown about its properties.

“The transition from graphite to graphene can be random,” said Xu. “Our idea was to control this.”

The researchers used a new technique called electrostatic manipulation scanning tunneling microscopy to “lift” the top layer of graphite, creating graphene. Scientists have traditionally used scanning tunneling microscopy on a stationary surface, but this new technique uses a moving surface to move between graphite and graphene.

“Not only can we make it happen, but we can control the process,” Xu said.

Using this technique, the researchers can tell how much force it takes to create graphene and how much distance exists between graphene and the as well as to track the total energy of the process.

How the electron acquires its mass is a fundamental topic and is related to particle physicists’ hunt for the Higgs boson, a long-hypothesized elementary particle that has predicted properties, such as a lack of spin and electric charge, but that does not have a predicted value for mass. Being able to move electrons between a massive and massless state allows scientists to study this duality and how it works. The level of control the scientists have over the process will allow them to figure out possible ways to use for advancing this understanding.

Explore further: Team calculates the role of buried layers in few-layer epitaxial graphene

Related Stories

New method offers control of strain on graphene membranes

April 2, 2012

(PhysOrg.com) -- Graphene could be the superhero of materials – it’s light, strong and conducts heat and electricity effectively, which makes it a great material for potential use in all kinds of electronics. And ...

Graphite + water = the future of energy storage

July 15, 2011

A combination of two ordinary materials – graphite and water – could produce energy storage systems that perform on par with lithium ion batteries, but recharge in a matter of seconds and have an almost indefinite ...

Seeing an atomic thickness

May 19, 2011

Scientists from NPL, in collaboration with Linkoping University, Sweden, have shown that regions of graphene of different thickness can be easily identified in ambient conditions using Electrostatic Force Microscopy (EFM).

Strong bonds between rare-earth metals and graphene

September 28, 2011

(PhysOrg.com) -- Transistors and information storage devices are getting smaller and smaller. But, to go as small as the nanoscale, scientists must understand how just a few atoms of metals behave when deposited on a surface. 

Recommended for you

Atomic blasting creates new devices to measure nanoparticles

December 14, 2017

Like sandblasting at the nanometer scale, focused beams of ions ablate hard materials to form intricate three-dimensional patterns. The beams can create tiny features in the lateral dimensions—length and width, but to create ...

Engineers create plants that glow

December 13, 2017

Imagine that instead of switching on a lamp when it gets dark, you could read by the light of a glowing plant on your desk.

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
not rated yet Jul 02, 2012
How the electron acquires its mass is a fundamental topic and is related to particle physicists hunt for the Higgs boson, a long-hypothesized elementary particle that has predicted properties, such as a lack of spin and electric charge, but that does not have a predicted value for mass. Being able to move electrons between a massive and massless state allows scientists to study this duality and how it works.

Aren't we confusing 'mass' and 'effective mass' here?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.