Step by step toward more efficient chemical synthesis

Aug 13, 2012
Step by step toward more efficient chemical synthesis
© Thinkstock

Chemical engineering conventionally divides the process from raw materials to finished product into unit operations. EU-funded researchers developed software tools to evaluate integration of two or more units for optimisation of chemical synthesis in a broad range of applications.

Unit operations include such activities as separation, purification, mixing and reaction processes. More modern methodologies strive to integrate two or more steps into multifunctional units to improve product quality and yield while decreasing , waste, environmental impact and .

The overall process of chemical reaction and separation to obtain desired products and recyclation of (reaction and separation) is an active area of research with the goal of exploiting synergies for process design and optimisation. Combining separation and reaction in one continuous reactor concept has the potential to greatly increase speed and efficiency of the conversion process.

Development of generic integration software tools for a range of alternative processes related to the chemical, pharmaceutical and electronics industries was the motivation behind the ‘Integrating separation and reaction technologies’ (Insert) project.

European scientists conducted both theoretical and experimental work, with the latter designed to provide the necessary data for model development and validation.

In addition to identification of computer hardware/software and numerous chemical test systems, investigators developed measures of environmental impact, cost effectiveness and safety.

Pilot plants were set up and six different chemical systems and alternatives were investigated. Reactions were integrated with separation techniques including distillation, adsorption, membrane filtration and the use of dividing wall columns.

Overall, the Insert consortium successfully designed, modelled and analysed promising multi-unit processing equipment including both new technologies and emerging ones.

The database formed the basis of generic computer-aided process engineering tools that promise to advance the state of the art in multi-unit chemical processing for optimisation of reaction-separation sequences in many related chemical fields.

Explore further: Team pioneers strategy for creating new materials

add to favorites email to friend print save as pdf

Related Stories

Microscale Chemical Factory

Jul 04, 2007

Miniaturization is invading the world of chemical syntheses. Since typical chemical syntheses take place in several reaction steps with various separation or purification steps in between, microchemistry has almost always ...

Recommended for you

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Breaking benzene

Aug 27, 2014

Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon-carbon bonds in these compounds plays an important role in the production of fuels and valuable ...

User comments : 0