Study discovers new atmospheric compound tied to climate change, human health

August 8, 2012

An international research team led by the University of Colorado Boulder and the University of Helsinki has discovered a surprising new chemical compound in Earth's atmosphere that reacts with sulfur dioxide to form sulfuric acid, which is known to have significant impacts on climate and health.

The new compound, a type of carbonyl oxide, is formed from the reaction of ozone with alkenes, which are a family of hydrocarbons with both natural and man-made sources, said Roy "Lee" Mauldin III, a research associate in CU-Boulder's atmospheric and oceanic sciences department and lead study author. The study charts a previously unknown for the formation of , which can result both in increased acid rain and as well as negative respiratory effects on humans.

"We have discovered a new and important, atmospherically relevant oxidant," said Mauldin. "Sulfuric acid plays an essential role in Earth's atmosphere, from the ecological impacts of acid precipitation to the formation of new , which have significant climatic and health effects. Our findings demonstrate a newly observed connection between the biosphere and ."

A paper on the subject is being published in the Aug. 9 issue of Nature.

Typically the formation of sulfuric acid in the atmosphere occurs via the reaction between the hydroxyl radical OH -- which consists of a hydrogen atom and an with unpaired electrons that make it highly reactive -- and , Mauldin said. The trigger for the reactions to produce sulfuric acid is sunlight, which acts as a "match" to ignite the chemical process, he said.

But Mauldin and his colleagues had suspicions that there were other processes at work when they began detecting sulfuric acid at night, particularly in forests in Finland -- where much of the research took place -- when the sun wasn't present to catalyze the reaction. "There were a number of instances when we detected sulfuric acid and wondered where it was coming from," he said.

In the laboratory, Mauldin and his colleagues combined ozone -- which is ubiquitous in the atmosphere -- with sulfur dioxide and various alkenes in a gas-analyzing instrument known as a mass spectrometer hooked up with a "flow tube" used to add gases. "Suddenly we saw huge amounts of sulfuric acid being formed," he said.

Because the researchers wanted to be sure the hydroxyl radical OH was not reacting with the sulfur dioxide to make sulfuric acid, they added in an OH "scavenger" compound to remove any traces of it. Later, one of the research team members held up freshly broken tree branches to the flow tube, exposing hydrocarbons known as isoprene and alpha-pinene -- types of alkenes commonly found in trees and which are responsible for the fresh pine tree scent.

"It was such a simple little test," said Mauldin. "But the sulfuric acid levels went through the roof. It was something we knew that nobody had ever seen before."

Mauldin said the new chemical pathway for sulfuric acid formation is of interest to climate change researchers because the vast majority of sulfur dioxide is produced by fossil fuel combustion at power plants. "With emissions of sulfur dioxide, the precursor of sulfuric acid, expected to rise globally in the future, this new pathway will affect the atmospheric sulfur cycle," he said.

According to the U.S. Environmental Protection Agency, more than 90 percent of sulfur dioxide emissions are from fossil fuel combustion at power plants and other industrial facilities. Other sulfur sources include volcanoes and even ocean phytoplankton. It has long been known that when sulfur dioxide reacts with OH, it produces sulfuric acid that can form , shown to be harmful to terrestrial and aquatic life on Earth.

Airborne sulfuric acid particles -- which form in a wide variety of sizes -- play the main role in the formation of clouds, which can have a cooling effect on the atmosphere, he said. Smaller particles near the planet's surface have been shown to cause respiratory problems in humans.

Mauldin said the newly discovered oxidant might help explain recent studies that have shown large parts of the southeastern United States might have cooled slightly over the past century. Particulates from sulfuric acid over the forests there may be forming more clouds than normal, cooling the region by reflecting sunlight back to space.

Explore further: Serpentine locks up Carbon Dioxide

Related Stories

Serpentine locks up Carbon Dioxide

September 2, 2004

A common mineral can remove carbon dioxide from combustion gases, but in its natural state, it is glacially slow. Now, a team of Penn State researchers is changing serpentine so that it sequesters the carbon dioxide from ...

Researchers get new view of how water and sulfur dioxide mix

May 9, 2011

High in the sky, water in clouds can act as a temptress to lure airborne pollutants such as sulfur dioxide into reactive aqueous particulates. Although this behavior is not incorporated into today's climate-modeling scenarios, ...

Recommended for you

Clues from ancient Maya reveal lasting impact on environment

September 3, 2015

Evidence from the tropical lowlands of Central America reveals how Maya activity more than 2,000 years ago not only contributed to the decline of their environment but continues to influence today's environmental conditions, ...

Ice sheets may be more resilient than thought

September 3, 2015

Sea level rise poses one of the biggest threats to human systems in a globally warming world, potentially causing trillions of dollars' worth of damages to flooded cities around the world. As surface temperatures rise, ice ...

Climate ups odds of 'grey swan' superstorms

August 31, 2015

Climate change will boost the odds up to 14-fold for extremely rare, hard-to-predict tropical cyclones for parts of Australia, the United States and Dubai by 2100, researchers said Monday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.