New ultracapacitor delivers a jolt of energy at a constant voltage

Jul 19, 2012

Chemical batteries power many different mobile electronic devices, but repeated charging and discharging cycles can wear them out. An alternative energy storage device called an ultracapacitor can be recharged hundreds of thousands of times without degrading, but ultracapacitors have their own disadvantages, including a voltage output that drops precipitously as the device is discharged. Now a researcher from the University of West Florida has designed an ultracapacitor that maintains a near steady voltage. The novel constant-voltage design, which may one day help ultracapacitors find new uses in low-voltage electric vehicle circuits and handheld electronics, is described in the American Institute of Physics' Journal of Renewable and Sustainable Energy.

Standard capacitors store energy in an electric field created when opposite electrical charges collect on two plates separated by a thin . In ultracapacitors the surface area of the plates is increased with a coating of porous , which is packed with and cracks that can capture charged particles. The space between the plates is filled with an electrolyte solution containing positive and negative ions. As charge accumulates on the plates, they attract ions, creating a double-layer of stored energy.

In both standard capacitors and ultracapacitors, the drops as the stored charge is released. Most electronic devices, however, require constant voltage to operate. An called a DC-DC converter can change the dropping voltage of the capacitor into a constant voltage output, but the converters experience problems below one volt.

"A significant portion of the energy of the ultracapacitor is held below one volt," notes Ezzat Bakhoum, a professor of electrical engineering at the University of West Florida. "Operation in that region is very difficult because the DC-DC converter cannot function at such low voltage. Applications where the use of an ultracapacitor is precluded because of this problem include low-voltage systems in , hand-held power tools, toys, and cameras, just to name a few."

So Bakhoum has designed an ultracapacitor that maintains a near-constant voltage without a DC-DC converter. The ultracapacitor is fitted with an electromechanical system that can slowly lift the core of the device out of the as the stored charged is released. As the electrolyte drains away, the device can hold less charge, thus lowering, its capacitance. Since the voltage of the capacitor is related to the ratio of the stored charge to the capacitance, the system maintains a steady voltage as charge is siphoned off.

Bakhoum built and tested a prototype of the new ultracapacitor. After attaching a 35-watt load to the device, he found he could successfully program the voltage to stay within a 4.9 to 4.6 volt range. Testing also showed that the constant-voltage mechanism operates with a 99 percent efficiency or higher. The lifetime of the electromechanical motor is expected to be about the same as the lifetime of the ultracapacitor's core, Bakhoum writes.

"The ultracapacitor is a wonderful new that has many advantages by comparison with batteries," says Bakhoum. In addition to their near limitless ability to be recharged, ultracapacitors can release a jolt of energy much more quickly than batteries. One current disadvantage of commercially available ultracapacitors, that they store only a fraction of the energy per unit mass that batteries store, is a challenge that is still being researched. Some groups have experimented, for example, with changing the structure of the electrode to increase surface area, and thus the amount of charge that can be stored.

For Bakhoum, future research steps include modifying the design of the constant-voltage ultracapacitor system so that it can be installed at any angle. He may also explore whether the same type of constant-voltage approach is suitable for new, high-energy-density ultracapacitors.

Explore further: Two new baryon particles discovered in agreement with York U prediction

More information: "Constant Voltage Ultracapacitor" Journal of Renewable and Sustainable Energy, jrse.aip.org/resource/1/jrsebh/v4/i3/p033116_s1

Related Stories

New ultracapacitor recharges in under a millisecond

Sep 24, 2010

(PhysOrg.com) -- A new ultracapacitor or electric double-layer capacitor (DLC) design has been announced in the journal Science this week, and could pave the way for smaller and lighter portable electronics device ...

Ultracapacitors Make City Buses Cheaper, Greener

Oct 21, 2009

(PhysOrg.com) -- A fleet of 17 buses near Shanghai has been running on ultracapacitors for the past three years, and today that technology is coming to the Washington, DC, for a one-day demonstration. Chinese ...

Recommended for you

New technique allows ultrasound to penetrate bone, metal

3 hours ago

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these ...

Taming the Boltzmann equation

6 hours ago

Physicists at Ludwig Maximilian University of Munich, Germany, have developed a new algorithm that is capable of solving the Boltzmann equation for systems of self-propelled particles. The new method also ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Scottingham
5 / 5 (1) Jul 19, 2012
So awesome!
Bewia
1 / 5 (1) Jul 19, 2012
It's interesting but somewhat suspicious concept, because the electrolyte in capacitor capacitor doesn't work in the same way, like the air-gap dielectric. Until the surface of capacitor is soaked with electrolyte, then the whole area of electrodes contributes to the output voltage - what is increasing instead is the internal resistance of the capacitor. Even from mechanical perspective the whole principle appears somewhat strange for me, because the separation of the electrodes would require the same energy, which would be released by its discharge.
pietrocecchi
not rated yet Jul 19, 2012
"So Bakhoum has designed an ultracapacitor that maintains a near-constant voltage without a DC-DC converter. The ultracapacitor is fitted with an electromechanical system that can slowly lift the core of the device out of the electrolyte solution as the stored charged is released. As the electrolyte drains away, the device can hold less charge, thus lowering, its capacitance. Since the voltage of the capacitor is related to the ratio of the stored charge to the capacitance, the system maintains a steady voltage as charge is siphoned off."

Genial!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.