SuperSTEM research reveals that graphene re-knits its holes

Jul 20, 2012 By Wendy Ellison
SuperSTEM2, there are only six of these exceptionally sensitive instruments worldwide. Credit: SuperSTEM Consortium

(Phys.org) -- Scientists at The University of Manchester and the SuperSTEM facility at STFC’s Daresbury Laboratory have discovered that the ‘miracle material’, graphene, undergoes a self repairing process to mend holes. This research, published in Nano Letters, could hold the key in the quest to realise graphene's huge potential for use in fields from electronics to medicine.

Graphene, which is made of sheets of carbon just one atom thick, is a promising material for a wide range of future applications due, for instance, to its exceptional electronic properties.

The team, which included Professor Kostya Novoselov, who shared a Nobel Prize in Physics in 2010 for exploiting the remarkable properties of graphene, was originally looking to gain a deeper understanding into how metals interact with graphene, essential if it is to be integrated into practical electronic devices in the future.

The researchers were using a powerful electron microscope at the SuperSTEM Laboratory at Daresbury, which allows scientists to study the properties of materials one atom at a time. They recently demonstrated that metals can initiate the formation of holes in the graphene sheet, which could be hugely detrimental to the properties of any graphene-based device.

Surprise results then showed that some of the that had been created during this process were actually mending themselves spontaneously using nearby loose carbon atoms to re-knit the graphene structure.

Dr. Quentin Ramasse, Scientific Director at SuperSTEM said: "This was a very exciting and unexpected result. The fact that graphene can heal itself under the right conditions may be the difference between a working device and a proof of concept without any real application. We may now have a way of not only drilling through in a controlled fashion to sculpt it at the atomic level, but also to grow it back in new shapes. This adds a lot of flexibility to our nanotechnology toolbox and could pave the way to future technological applications".

Explore further: Nano filter cleans environmentally hazardous industrial byproducts

More information: View the full paper online here.

Related Stories

Graphene's 'Big Mac' creates next generation of chips

Oct 09, 2011

The world's thinnest, strongest and most conductive material, discovered in 2004 at the University of Manchester by Professor Andre Geim and Professor Kostya Novoselov, has the potential to revolutionize material ...

Graphene's piezoelectric promise

Jan 05, 2012

Engineers predict that graphene can be coaxed into acting piezoelectric, merely by punching triangular holes into the material.

Seeing an atomic thickness

May 19, 2011

Scientists from NPL, in collaboration with Linkoping University, Sweden, have shown that regions of graphene of different thickness can be easily identified in ambient conditions using Electrostatic Force ...

Recommended for you

'Mind the gap' between atomically thin materials

Dec 24, 2014

When it comes to engineering single-layer atomic structures, "minding the gap" will help researchers create artificial electronic materials one atomic layer at a time, according to a team of materials scientists. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.