Scientists discover cell surface 'docking stations' play important function in membrane protein trafficking

Jun 28, 2012
Diego Krapf and a student working in his laboratory

(Phys.org) -- Ion channel proteins – teeny batteries in cells that are the basis for all thought and muscle contraction, among other things – also serve as important docking stations for other proteins that need help figuring out where to go, according to groundbreaking new research by a team of Colorado State University scientists.

The research by Diego Krapf, an assistant professor in the Department of Electrical and Computer Engineering, and Mike Tamkun, a professor in the Department of Biomedical Sciences, appears this month in the peer-reviewed journal, Molecular Biology of the Cell. Co-author Emily Deutsch, who began working on this project as a freshman, obtained her bachelor’s degree in Biology from Colorado State in May.

Ultimately, the basic discovery could help scientists solve puzzles like how certain mutations in ion channel genes lead to epilepsy and other nerve diseases or cardiac diseases such as stroke and hypertension.

Ion channels are pores in the membranes of all neurons that regulate electrical activity and the passage of information in the nervous system. Interfering with those channels can disrupt this information flow. Lidocaine, for example, blocks ion channels that prevent the pain of dental work from getting to the brain. Another example that Tamkun uses in his classes: Capsaicin, the active ingredient in peppers that makes them hot, works by opening a specific ion channel in nerve cells designed to sense temperature. Those nerve cells connect to pain-sensing pathways, which is why some people feel pain when they eat peppers, he said.

Now Tamkun and Krapf have discovered that certain ion channels, in addition to being the overseers of electrical currents in cells, also serve as transportation hubs or docking stations for other cell surface proteins and help deliver those proteins where they need to go. Using single molecule detection techniques, they’ve captured on video ion channels forming platforms, attracting proteins and holding them within the platform like cows in a corral before sending them to their destination.

The scientists suggest that these platforms are critical to understanding strokes because, under a microscope, they visibly fall apart on nerve cell surfaces affected by stroke. So far, their studies have focused on one of 60 channels in the human body that deliver potassium, but they are also studying sodium and calcium channels.

“Mutations in ion channel genes cause both nerve and cardiac disease, and in many cases we don’t know what these mutations do to the ion transporting activity of the channel,” Tamkun said. “So we wondered whether channels could be doing something other than passing electrical current. We figured out how to label the channels in living cells so we can take movies of them moving around using a high-powered microscope. The channels form specialized delivery platforms on the cell surface that signal where proteins need to be sent.”

“We’re interested in how ion channel proteins move on the cell surface, that includes how they get into the cell surface and how they’re removed from the cell surface,” Krapf said. “We decided years ago it would be a good idea if we could look at these molecules one molecule at a time – we didn’t know much about how their movement could be analyzed.

“It’s a new function for these channels – to form a platform to signal to the cell where other proteins need to be sent,” Krapf said.

The interdisciplinary science is a mix of cell biology, optical imaging of and the analysis of the active and random motion of molecules. Krapf, a physicist, captures and analyzes random motion of molecules while Tamkun focuses on cell makeup and behavior.

“That’s the way the major discoveries are likely to occur – when collaborations exist between scientists in different fields,” Tamkun said.

Explore further: NYSCF Research Institute announces largest-ever stem cell repository

More information: www.molbiolcell.org/content/ea… 1-0047.full.pdf+html

Related Stories

Unraveling the mysteries of poison

Apr 13, 2006

Researchers from the Max Planck Institite for Biophysical Chemistry and other German and French colleagues have combined magnetic resonance spectroscopy (solid-state NMR) with special protein synthesis procedures to uncover ...

Study finds new pathway critical to heart arrhythmia

Oct 26, 2011

University of Maryland School of Medicine researchers have uncovered a previously unknown molecular pathway that is critical to understanding cardiac arrhythmia and other heart muscle problems. Understanding the basic science ...

Complex channels

Jan 24, 2007

The messages passed in a neuronal network can target something like 100 billion nerve cells in the brain alone. These, in turn communicate with millions of other cells and organs in the body. How, then, do whole cascades ...

Recommended for you

Crowdsourced power to solve microbe mysteries

23 hours ago

University of New South Wales scientists hope to unlock the secrets of millions of marine microbes from waters as far apart as Sydney's Botany Bay and the Amazon River in Brazil, with the help of an international ...

Reading a biological clock in the dark

Oct 21, 2014

Our species' waking and sleeping cycles – shaped in millions of years of evolution – have been turned upside down within a single century with the advent of electric lighting and airplanes. As a result, ...

User comments : 0