How proteins find their way on chromosomes

Jun 25, 2012

A research team at Uppsala University has managed to clarify how proteins that regulate the activity of genes quickly find their way on chromosomes among millions of possible binding sites. The study also confirms a more than 30-year-old theory about the process. The findings are being published today in the scientific journal Science.

Protein synthesis is one of life’s absolutely most central processes, and its correct functioning is of great importance for whether we are healthy or ill.

The production of a certain protein in cells starts with the corresponding gene on the chromosome. This production is to a great extent regulated by other proteins, so-called transcription factors, that stimulate or block production by binding to the DNA, close to the relevant gene.

These thermostat-like regulatory systems enable the cell to shut down the production of certain proteins if they are not needed at a given time. Production can also be quickly turned on when changes in the cell’s environment call for new functions. For this regulation to have a rapid response time, it’s necessary for bound transcription factors to be able to be released from the DNA at a given signal, but also for them to be able find their way back quickly. In the bacterium Escherichia coli this involves locating a unique DNA sequence among nearly five million incorrect sites on the chromosome.

- We have studied how find their specific sites on the chromosome and how quickly they do so. It turns out they scan some 40 DNA base pairs at a time by sliding along the DNA filament and then testing a new chromosomal region, says Royal Academy Research Fellow Johan Elf, whose team has been addressing this question for several years.

A theory of how the right are found was proposed by Uppsala researcher Otto Berg more than thirty years ago. Now Johan Elf’s group shows that the theoretical predictions are correct by using newly developed microscopy that is so sensitive that it’s possible to see individual molecules in living cells.

- The findings show that problems that previously could only be studied using biochemistry in test tubes can now also be investigated in living cells. The study also stresses the usefulness of combining advanced new measurement technology with detailed physiochemical models to break new ground in molecular biology, says Petter Hammar, a doctoral candidate at the Department of Cell and Molecular Biology.

Explore further: Team publishes evidence for natural alternative to antibiotic use in livestock

add to favorites email to friend print save as pdf

Related Stories

'Moonlighting' molecules discovered

Oct 29, 2009

Since the completion of the human genome sequence, a question has baffled researchers studying gene control: How is it that humans, being far more complex than the lowly yeast, do not proportionally contain in our genome ...

Scientists discover secret life of chromatin

Sep 01, 2011

Chromatin - the intertwined histone proteins and DNA that make up chromosomes – constantly receives messages that pour in from a cell’s intricate signaling networks: Turn that gene on. Stifle that one.

Recommended for you

Researchers capture picture of microRNA in action

Oct 30, 2014

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

Oct 30, 2014

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.