Japanese researchers realize world's first oxidation reaction with well-defined molecular alignment, spin directions

May 28, 2012
Fig: Control of the alignment of the O2 molecular axis by the magnetic field direction and (bottom) time evolution of the O2 adsorption probability on the Si (100) surface, showing that the reaction probability changes greatly when the O2 alignment is changed in accordance with a control signal.

Japanese researchers developed the world’s first O2 molecular beam which enables designation of the alignment of the molecular axis and spin direction.

A research group consisting of Dr. Mitsunori Kurahashi, Principal Researcher, and Dr. Yasushi Yamauchi, Group Leader of the Spin Characterization Group, both of the Nano Characterization Unit of the National Institute for Materials Science, developed the world’s first O2 molecular beam which enables us to designate the alignment of the molecular axis and spin direction. The NIMS researchers applied this beam to the surface oxidation of silicon, and discovered that only oxygen molecules with the molecular axis nearly parallel to the surface contribute to the silicon oxidation.

Molecular oxygen (O2) is one of the most important chemical species in virtually all fields of fundamental science and materials development. O2 has an anisotropic shape, i.e., is a linear molecule, and possesses spin originating from two unpaired electrons. However, until now, there have been no experimental methods which enable us to investigate how the shape and spin of an O2 molecule influence oxidation reactions. Even though the initial oxidation of silicon has been studied in detail to understand the thermal oxidation of silicon used for fabricating gate insulator films, the origin of the particularly low initial reaction probability has not been understood well.

Using the magnetic hexapolar field technique, the team headed by Dr. Kurahashi developed the world’s first single quantum state-selected O2 beam which enables us to designate both the alignment of the molecular axis and the spin direction. By applying this beam to the surface oxidation of silicon, Dr. Kurahashi’s team discovered that only O2 molecules with the molecular axis nearly parallel to the surface contribute to the silicon oxidation. This research clarified that the silicon oxidation is inefficient due to the stringent geometrical requirement for the O2 axis direction, and only those molecules that satisfy a certain angular condition can participate in the reaction.

This research established a new experimental technique for analyzing the effects of the O2 alignment and the spin direction on oxidation reactions, and elucidated the origin of the inefficiency in the silicon oxidation. This technique not only enables us to scrutinize the mechanism of oxidation, but also opens up a possibility to control reactions or create new high quality materials by controlling the O2 alignment and/or spin direction.

The results were published on April 19 in the online edition of Physical Review B (Rapid Communication) of the American Physical Society.

Explore further: Chemical Bonding States at Silicon / Silicon Dioxide Interfaces Characterisable with Light

Related Stories

New tool for proton spin

May 6, 2011

How the particles that constitute a proton give rise to is to its rotation, or ‘spin’, is an intriguing open question of contemporary particle physics. A technique that could provide some answers has been developed ...

Recommended for you

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(Phys.org)—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Anti-aging treatment for smart windows

October 1, 2015

Electrochromic windows, so-called 'smart windows', share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University have now worked out an entirely new way to rejuvenate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.