A cell's first steps: Building a model to explain how cells grow

May 18, 2012
An illustration of the Lehigh mathematical model shows the evolution of Cdc42 distribution during cell growth, as cells transition toward a symmetric, or growth state. Credit: Lehigh University

A collaboration between Lehigh University physicists and University of Miami biologists addresses an important fundamental question in basic cell biology: How do living cells figure out when and where to grow?

The teams of Assistant Professor Dimitrios Vavylonis and Associate Professor Fulvia Verde discovered that protein Cdc42 oscillates throughout yeast , precipitating a ballet of proteins that change its polarity. By changing polarity, Cdc42 regulates shape, structure and function in , starting the growth process by clustering in an area of the . The oscillatory mechanism they found may be a general strategy among all self-organizing , not just simple yeast.

"The research is fundamental because it provides science with an important answer to how a living cell controls its growth process," said Vavylonis. "Knowing how this particular protein controls growth could in the long run affect the search for drugs to control cell growth for , , and explain how neurons extend in different directions."

This video is not supported by your browser at this time.
This video shows active Cdc42 oscillating through yeast cells. Credit: University of Miami Miller School of Medicine

This work indicates how Cdc42 activates bipolar growth only once a minimal cell length has been achieved. At that point, Cdc42 begins to oscillate back and forth through the cell, as the two tips compete for it. Using fluorescent markers to tag each of the many proteins involved, researchers observed the Cdc42 protein oscillate from side to side within a cell, switching sides about every five minutes. The fluctuations provide an adaptable mechanism for cells to control their size and structure in the fast-changing environment within.

The study, Oscillatory Dynamics of Cdc42 GTPase In The Control of Polarized Growth, appears today in the journal Science.

The findings demonstrate just part of the complex process of cell growth and differentiation, but mark how advanced the science of biophysics has become. Only recently has the clear imaging and monitoring of become possible at the minute sizes and shortened time scales of individual cell maturation.

Active Cdc42 oscillates through yeast cells. The tips are sites of cell growth and the presence of active Cdc42 at the tips activates processes that contribute to cell growth. Credit: Lehigh University

"Up until now, no one has ever seen the way this protein oscillates back and forth throughout the cell," said Tyler Drake, a Lehigh graduate student and co-author of the paper. "Looking at a simple system like yeast may allow us to understand the principles behind growth in other cells."

The Lehigh team developed the mathematical model of this phenomenon by analyzing cell data collected by Maitreyi Das and Fulvia Verde at the University of Miami. Drake and Vavylonis used a Lehigh Class of 1968 Junior Faculty Fellowship and a Sigma Xi grant to visit the University, where they began to test their mathematical theory. According to the model, changes in abundance or activity of Cdc42, or of its regulators, can shift the system to more asymmetric or symmetric states. The model's conclusions were supported by biological observations of the Miami team, who genetically manipulated regulators of the protein and realized they could change cell shape and growth symmetry by adjusting Cdc42.

Vavylonis's research has for years explored the way the cellular cytoskeleton organizes and functions. In collaboration with biologists and computer scientists, his team uses physics to study, analyze, and model the physical properties of these adaptive biological materials.

Explore further: How plant cell compartments change with cell growth

Related Stories

Asymmetry due to perfect balance

Apr 25, 2007

Cell membranes are like two-dimensional fluids whose molecules are distributed evenly through lateral diffusion. But many important cellular processes depend on cortical polarity, the locally elevated concentration ...

Recommended for you

How plant cell compartments change with cell growth

11 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

11 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

12 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

12 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0