Gases drawn into particles stay there

Apr 09, 2012
SPLAT II provides measurements of particles with unprecedented sensitivity and precision to scientists such as Alla Zelenyuk.

(Phys.org) -- Contrary to expectations, formation and growth of complex organic particles generated during oxidation of volatile organic molecules by ozone and nitrate follows a non-equilibrium path, according to a recent study in the Proceedings of the National Academy of Sciences.

The formation kinetic data show that the organic nitrates do not dissolve in the , but rather condense on quasi-solid particles' surfaces, where they are trapped, proving unequivocally that these particles are not in a liquid state. The study was conducted by University of California, Irvine chemist Prof. Barbara Finlayson-Pitts in collaboration with Dr. Alla Zelenyuk at Pacific Northwest National Laboratory.

These findings represent an important step in the development of a fundamental mechanistic understanding of the formation and properties of complex organic particles, putting into question prevailing assumptions used in current aerosol models. Reformulation of aerosol models would affect the predicted formation and evolution of , their role in heterogeneous chemistry, their projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies.

SPLAT, a one-of-a-kind single spectrometer that resides in EMSL, was used to characterize in great detail the properties of millions of particles that were formed in the 26-foot-long "aerosol flow tube" at AirUCI.

"What made these findings possible is the ability to characterize multitude of individual particles' properties with high precision," said Zelenyuk. "Incorporating what we found about these particles into models will provide fundamental understanding of formation and transformations of complex organic particles."

This research project represents the initial step towards developing a fundamental, mechanistic theory of organic particle formation and evolution. Future research will proceed to test how general the findings are to other organic particles formed under different conditions from different precursors. In parallel, a fundamental modeling framework that takes the experimental findings into account will be developed.

Explore further: The fluorescent fingerprint of plastics

More information: V Perraud, et al. 2012. "Nonequilibrium atmospheric secondary organic aerosol formation and growth." Proceedings of the National Academy of Science. 109:2836-2841. DOI: 10.1073/pnas.1119909109

Related Stories

Refining atmospheric climate models

Feb 01, 2011

(PhysOrg.com) -- A long, frustrating search for the source of "extra" aerosols seen in field experiments but not in models might have come to an end when scientists at Pacific Northwest National Laboratory ...

Climate sensitivity greater than previously believed

Dec 20, 2011

Many of the particles in the atmosphere are produced by the natural world, and it is possible that plants have in recent decades reduced the effects of the greenhouse gases to which human activity has given rise. One consequence ...

Recommended for you

Proteins: New class of materials discovered

37 minutes ago

Scientists at the Helmholtz Center Berlin along with researchers at China's Fudan University have characterized a new class of materials called protein crystalline frameworks.

The fluorescent fingerprint of plastics

20 hours ago

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

Aug 21, 2014

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Researchers create engineered energy absorbing material

Aug 21, 2014

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

User comments : 0