Gases drawn into particles stay there

April 9, 2012
SPLAT II provides measurements of particles with unprecedented sensitivity and precision to scientists such as Alla Zelenyuk.

(Phys.org) -- Contrary to expectations, formation and growth of complex organic particles generated during oxidation of volatile organic molecules by ozone and nitrate follows a non-equilibrium path, according to a recent study in the Proceedings of the National Academy of Sciences.

The formation kinetic data show that the organic nitrates do not dissolve in the , but rather condense on quasi-solid particles' surfaces, where they are trapped, proving unequivocally that these particles are not in a liquid state. The study was conducted by University of California, Irvine chemist Prof. Barbara Finlayson-Pitts in collaboration with Dr. Alla Zelenyuk at Pacific Northwest National Laboratory.

These findings represent an important step in the development of a fundamental mechanistic understanding of the formation and properties of complex organic particles, putting into question prevailing assumptions used in current aerosol models. Reformulation of aerosol models would affect the predicted formation and evolution of , their role in heterogeneous chemistry, their projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies.

SPLAT, a one-of-a-kind single spectrometer that resides in EMSL, was used to characterize in great detail the properties of millions of particles that were formed in the 26-foot-long "aerosol flow tube" at AirUCI.

"What made these findings possible is the ability to characterize multitude of individual particles' properties with high precision," said Zelenyuk. "Incorporating what we found about these particles into models will provide fundamental understanding of formation and transformations of complex organic particles."

This research project represents the initial step towards developing a fundamental, mechanistic theory of organic particle formation and evolution. Future research will proceed to test how general the findings are to other organic particles formed under different conditions from different precursors. In parallel, a fundamental modeling framework that takes the experimental findings into account will be developed.

Explore further: When the air turns brown: Scientists discover reactions that create climate-changing brown carbon aerosol

More information: V Perraud, et al. 2012. "Nonequilibrium atmospheric secondary organic aerosol formation and growth." Proceedings of the National Academy of Science. 109:2836-2841. DOI: 10.1073/pnas.1119909109

Related Stories

Refining atmospheric climate models

February 1, 2011

(PhysOrg.com) -- A long, frustrating search for the source of "extra" aerosols seen in field experiments but not in models might have come to an end when scientists at Pacific Northwest National Laboratory and Imre Consulting ...

Climate sensitivity greater than previously believed

December 20, 2011

Many of the particles in the atmosphere are produced by the natural world, and it is possible that plants have in recent decades reduced the effects of the greenhouse gases to which human activity has given rise. One consequence ...

Gases drawn into smog particles stay there, study reveals

February 21, 2012

Airborne gases get sucked into stubborn smog particles from which they cannot escape, according to findings by UC Irvine and other researchers published today in the Proceedings of the National Academy of Sciences.

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.