Glowing White: Solvent-free luminescent organic liquids for organic electronics

Mar 16, 2012
Glowing White: Solvent-free luminescent organic liquids for organic electronics

(PhysOrg.com) -- The future will be dominated by organic electronics, as opposed to current silicon-based technology. In the journal Angewandte Chemie, an international team of researchers has now introduced a new luminescent organic liquid that can be applied like ink. When two additional dyes are dissolved in this liquid, it forms a white luminescent paste that may offer a new way to make devices like large displays and white light-emitting diodes.

Current approaches to organic electronics mainly involve supports with conducting paths and components made of inexpensively printed or glued on. are interesting as potential “disposable electronics” for applications like electronic price tags. Even more intriguing are devices that cannot be produced with standard electronics, such as flexible films with integrated circuits for use as novel flat-panel displays or “electronic paper”. A third area of interest involves applications such as photovoltaics that are dependent on economical mass production in order to be profitable.

The development of large components like displays requires organic coatings that emit white light and are inexpensive to produce. Previous gel- or solvent-based liquid “” are easy to apply, but are often not colorfast or are barely luminescent after drying. For solids, on the other hand, processing is often too complex.

A team led by Takashi Nakanishi at the National Institute for Materials Science in Tsukaba (Japan) has taken a different approach: they use uncharged organic substances that are luminescent liquids at room temperature and require no solvent. The electronically active parts of the molecules consist of linear chains of carbon atoms linked by π-conjugated double bonds. This means that electrons can move freely over a large portion of the molecule. The core is shielded by low-viscosity organic side chains that ensure that the core areas do not interact with each other and that the substance remains liquid.

The researchers were able to prepare a liquid that fluoresces blue under UV light. They then dissolved green- and orange-emitting dyes in this solvent-free liquid. This results in a durable, stable white-emitting paste whose glow can be adjusted from a “cool” bluish white to a “warm” yellowish white by changing the ratio of the dyes. It is possible to use this ink directly in a roller-ball pen for writing, or to apply it with a brush on a wide variety of surfaces. Application to a commercially available UV-LED allowed the researchers to produce white light-emitting diodes.

Explore further: Researchers bring clean energy a step closer

More information: Takashi Nakanishi, Solvent-Free Luminescent Organic Liquids, Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201108853

Related Stories

Highly efficient organic light-emitting diodes

Aug 09, 2011

(PhysOrg.com) -- Organic light-emitting diodes (OLEDs) are seen as a promising replacement for the liquid-crystal displays (LCDs) used in many flat-screen televisions because they are cheaper to mass-produce. ...

Berkeley Researchers Light Up White OLEDs

Apr 06, 2010

(PhysOrg.com) -- Light-emitting diodes, which employ semiconductors to produce artificial light, could reduce electricity consumption and lighten the impact of greenhouse gas emissions. However, moving this ...

Recommended for you

Smart crystallization

9 hours ago

A novel nucleating agent that builds on the concept of molecularly imprinted polymers (MIPs) could allow crystallographers access to proteins and other biological macromolecules that are usually reluctant ...

Supersonic electrons could produce future solar fuel

10 hours ago

Researchers from institutions including Lund University have taken a step closer to producing solar fuel using artificial photosynthesis. In a new study, they have successfully tracked the electrons' rapid transit through ...

Aerogel catalyst shows promise for fuel cells

11 hours ago

(Phys.org)—Graphene nanoribbons formed into a three-dimensional aerogel and enhanced with boron and nitrogen are excellent catalysts for fuel cells, even in comparison to platinum, according to Rice University ...

Researchers bring clean energy a step closer

Feb 27, 2015

For nearly half a century, scientists have been trying to replace precious metal catalysts in fuel cells. Now, for the first time, researchers at Case Western Reserve University have shown that an inexpensive metal-free catalyst ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.