The origin of organic magnets

March 2, 2012
Figure 1: A compound comprising C60 (right), a spherical molecule of carbon atoms, and TDAE (left), tetrakis-dimethylamino-ethylene, is unusual because it can display magnetic behavior at low temperatures. Credit: 2012 Tohru Sato

Electrical engineers are starting to consider materials made from organic molecules -- including those made from carbon atoms -- as an intriguing alternative to the silicon and metals used currently in electronic devices, since they are easier and cheaper to produce. A RIKEN-led research team has now demonstrated the origin of magnetism in organic molecules, a property that is rarely found in this class of material, but is vital if a full range of organic electronic devices is to be created.  

The permanent magnetic properties of materials such as iron stem from an intrinsic mechanism called ferromagnetism. Ferromagnetism in organic materials is rare because their atomic structure is fundamentally different from metals. One of the few examples identified to date is called TDAE-C60: a compound comprising spherical carbon cages attached to an organic molecule known as tetrakis-dimethylamino-ethylene (Fig. 1). Since its identification in 1991, many theoretical and experimental studies have provided some insight into the mechanism driving this unexpected ferromagnetism, but the explanation was not definitive. A full understanding would help materials scientists to develop more advanced magnetic materials in the future. “A precise model for organic magnetism could aid the design of high-density recording materials for use in next-generation memories,” says team member Hitoshi Yamaoka from the RIKEN SPring-8 Center, Harima.

Materials scientists are particularly interested in understanding the electronic structure of TDAE-C60 and how this relates to its ferromagnetic properties. To this end, Yamaoka and his colleagues from research institutes across Japan studied this material using a powerful technique known as photoelectron spectroscopy (PES). They fired x-rays at a single crystal of TDAE-C60, and this radiation excited electrons in the crystal, which then escaped from the surface. The researchers measured the number and the kinetic energy of these electrons from which they could infer information about the electronic structure.

“From these experiments on a single crystal we could establish an exact theoretical model for organic magnetism,” explains Yamaoka. “We propose that the transfer of one electron from the TDAE to the C60 causes the properties of TDAE-C60.” The existence of the resulting positively charge TDAE state was also supported by the team’s theoretical calculations.

With this thorough understanding of organic magnetism, the next step will be to apply the material to practical applications. “The problem with the TDAE-C60 organic magnet, however, is that the magnetism only appears at temperatures below 16 kelvin,” says Yamaoka. “The next step will be to raise this transition point.”

Explore further: Solar cells will be fabricated by a single organic semiconductor

More information: Yamaoka, H., et al. Electronic state of an organic molecular magnet: Soft x-ray spectroscopy study of α-TDAE-C60 single crystal.  Physical Review B 84, 161404 (2011).

Related Stories

Mediating magnetism

May 4, 2011

( -- Titanium oxide doped with cobalt produces magnetic properties at room temperature via a newly discovered mechanism.

Recommended for you

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.