Clock gene helps plants prepare for spring flowering, study shows

Mar 08, 2012

Scientists have made fresh discoveries about the processes that govern plants' internal body clocks and help them adjust to changing seasons, triggering the arrival of flowers in spring.

Researchers tested computer models of in a simple cress plant to determine the role played by a protein, known as TOC1, in governing these daily cycles. The model shows how 12 work together to run the plant's complex clockwork, and reset the clock at dawn and dusk each day.

Researchers found that the TOC1 , which was previously associated with helping plants to wake up, is in fact involved in dampening in the evening, helping them stay dormant at night.

The findings, from the University of Edinburgh, contradict what scientists had previously understood about the gene and its role in early morning activity. in Barcelona independently reached a similar conclusion to the Edinburgh team. The two studies pave the way for further research to define how the cycles improve and allow plants to adapt to our changing environment.

These internal 24-hour cycles – known as circadian clocks – also allow people, animals and plants to make tiny adjustments as daylight changes, and adapt to changing seasons. Researchers hope their discovery will bring them a step closer to understanding other seasonal rhythms that affect plants and people – including the flowering of staple crops such as wheat, barley and rice, and the breeding patterns of animals.

The Edinburgh-led study, published in Molecular Systems Biology, was funded by the European Commission, Biotechnology and Biological Sciences Research Council and the Engineering and Physical Sciences Research Council. The Barcelona-led study, published in Science, was funded by the European Commission, the Ramón Areces Foundation, and the Spanish Ministry of Science and Innovation.

Professor Andrew Millar, of the University of Edinburgh's School of Biological Sciences, who led the modelling study, said: "The 24-hour rhythms of biological clocks affect all living things including plants, animals and people, with wide-ranging effects on sleep, metabolism and immunity. We are now far better placed to understand how this complex process impacts on the plant's life and what happens when the rhythms are interrupted, for example by climate change."

Professor Paloma Mas, of the Centre for Research in Agricultural Genomics in Spain, who led the experimental study, said: "The biological clock controls essential processes in plant growth and development, such as flowering and the control of growth by light. We can now extend the knowledge we have gained of cyclic processes to the major crops and other plants of agronomic interest."

Explore further: Top Japan lab dismisses ground-breaking stem cell study

add to favorites email to friend print save as pdf

Related Stories

Scientists show that plants have measure of the shortest day

Dec 23, 2009

(PhysOrg.com) -- It is not only people who feel the effects of short winter days - new research by the University of Edinburgh and the University of Warwick has shed light on how plants calculate their own winter solstice. ...

Clockwork plants

Mar 25, 2009

(PhysOrg.com) -- How do plants tell the time and the passing of the seasons? Plant scientists are enlisting the help of engineers in their quest to uncover the rhythms of circadian clocks.

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

5 hours ago

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.