Cell protein interactions favor fats

Mar 22, 2012

For cells to signal each other to carry out their vital work, could the cell membrane's lipids -- or fats -- play a role in buttering-up the process? A research group led by University of Illinois at Chicago chemistry professor Wonhwa Cho thinks so, and presents detailed findings in the April 27 issue of Molecular Cell, online March 22.

Proteins -- molecular machines that process signals critical for cell function and regulation -- perform their work by forming complex and tightly regulated interaction networks. Until recently, most scientists thought interactions were very tight and specific. But research now indicates that is not the case.

Cho has studied cell membranes for more than two decades and has long hypothesized that membrane lipids play a critical role in regulating cellular protein interactions. To convince skeptics, he and his team conducted a genomic-scale investigation into if, and how, lipids play this role.

"Cellular protein interactions are mediated by so-called domains, or PIDs. These are small molecular structural units within large proteins that specialize in recognizing interaction partners," he said.

"We decided to characterize PIDs in the whole genome and determine how many are regulated, by which membrane lipids, and how it's done."

For their they selected the PDZ domain, one of the most abundant in and a target for drug development. Developing therapies based on protein interactions is a major field of biomedical research, but a better understanding of protein is needed.

Due to the large number of PDZ domains, it was impractical to characterize all of them experimentally. So Cho, working with UIC computational scientist and associate professor of bioengineering Hui Lu, his graduate student Morten Kallberg, Columbia University colleague Barry Honig and Honig's postdoctoral assistant Antonina Silkov, performed bioinformatics computations to predict and classify the functions of all lipid-regulating PDZ domains using an experimental database collected by Cho's postdoctoral assistant Yong Chen and graduate student Ren Sheng.

Cho said the group found that "an unexpectedly large number" of PDZ domains -- more than 30 percent -- interact with various membrane lipids, and that lipids control their cellular location and interaction with other protein partners.

"Furthermore, different PDZ domains are regulated by different lipids in different mechanisms, which open new avenues for drug development for specific control of cellular activity of PDZ domains implicated in major human diseases," he said.

The findings will be available online in a searchable format for other researchers working on PDZ domains.

Cho and his group have since used their PDZ approach to study the other major protein interaction domains. He said they've collected substantial data and will soon report findings showing that lipids control cellular location and function in the other domains as well.

Cho said his next major step is to develop a new and novel class of small molecules that specifically modulate binding activity of protein interaction domains to control diverse, dysfunctional cellular signaling pathways which cause cancer, diabetes and other inflammatory and metabolic diseases.

Explore further: Reading a biological clock in the dark

Related Stories

Chemists get grip on slippery lipids

Aug 30, 2007

The ability of the body's cells to correctly receive and convey signals is crucial to good health. Lipids, or fats, play a critical role in this regulation by providing spaces for proteins to gather and network. They are ...

Recommended for you

Crowdsourced power to solve microbe mysteries

12 hours ago

University of New South Wales scientists hope to unlock the secrets of millions of marine microbes from waters as far apart as Sydney's Botany Bay and the Amazon River in Brazil, with the help of an international ...

Reading a biological clock in the dark

Oct 21, 2014

Our species' waking and sleeping cycles – shaped in millions of years of evolution – have been turned upside down within a single century with the advent of electric lighting and airplanes. As a result, ...

User comments : 0