Blocking 'oh-glick-nack' may improve long-term memory

Mar 27, 2012
Blocking 'oh-glick-nack' may improve long-term memory
Blocking the action of a sugar could boost memory and even fight cancer. The neuron on the left has CREB with O-GlcNAc and is short. The neuron on the right does not have that form of CREB and is longCredit: Linda Hsieh-Wilson, Ph.D.

Just as the familiar sugar in food can be bad for the teeth and waistline, another sugar has been implicated as a health menace and blocking its action may have benefits that include improving long-term memory in older people and treating cancer.

Progress toward finding such a blocker for the sugar — with the appropriately malicious-sounding name "oh-glick-nack" — was the topic of a report here today at the 243rd National Meeting & Exposition of the American Chemical Society (ACS).

Linda Hsieh-Wilson, Ph.D., explained that the sugar is not table sugar (sucrose), but one of many other substances produced in the body's cells that qualify as sugars from a chemical standpoint. Named O-linked beta-N-acetylglucosamine — or "O-GlcNAc" — it helps in orchestrating health and disease at their origins, inside the billions of cells that make up the body. O-GlcNAc does so by attaching to proteins that allow substances to pass in and out of the nucleus of cells, for instance, and helping decide whether certain genes are turned on or off. In doing so, O-GlcNAc sends signals that may be at the basis of cancer, diabetes, Alzheimer's disease and other disorders. Research suggests, for instance, that proteins loaded up with too much O-GlcNAc can't function normally.

At the ACS meeting, Hsieh-Wilson described how research in her lab at the California Institute of Technology and Howard Hughes Medical Institute implicate O-GlcNAc in memory loss and cancer. The research emerged from Hsieh-Wilson's use of advanced lab tools for probing a body process that involves attachment of sugars like O-GlcNAc to proteins. Called glycosylation, it helps nerves and other cells communicate with each other in ways that keep the body coordinated and healthy. When O-GlcNAc is attached to a protein, that binding process is known as O-GlcNAc glycosylation.

Hsieh-Wilson's team screened the entire mammalian brain for all O-GlcNAc-glycosylated proteins, using a new process that her laboratory developed. They identified more than 200 proteins bearing O-GlcNAc attachments or tags, many for the first time. The research was done in mice, stand-ins for humans in research that cannot be done on people. Some of the proteins carrying O-GlcNAc were involved in regulating processes like drug addiction and securing long-term storage of memories.

O-GlcNAc's effects on one particular protein, CREB, got the scientists' attention. CREB is a key substance that turns on and regulates the activity of genes. Many of the genes in cells are inactive at any given moment. Substances like CREB, termed transcription factors, turn genes on. Hsieh-Wilson found that when O-GlcNAc attached to CREB, CREB's ability to turn on genes was impaired. When the researchers blocked O-GlcNAc from binding CREB, the mice developed long-term memories faster than normal mice.

Could blocking O-GlcNAc boost in humans?

"We're far from understanding what happens in humans," Hsieh-Wilson emphasized. "Completely blocking O-GlcNAc might not be desirable. Do you really want to sustain all memories long-term, even of events that are best forgotten? How would blocking the from binding to other proteins affect other body processes? There are a lot of unanswered questions. Nevertheless, this research could eventually lead to ways to improve memory."

In a related study, Hsieh-Wilson found that O-GlcNAc interacted with another protein in ways that encourage the growth of cancer cells, suggesting that blocking its attachment might protect against cancer or slow the growth of cancer. And indeed, in mouse experiments, blocking O-GlcNAc resulted in much smaller tumors.

Again, a treatment for humans based on this discovery is far in the future, but the study singles out O-GlcNAc as a potential new target for developing anti-cancer drugs.

Explore further: Cells build 'cupboards' to store metals

More information: Abstract
Understanding the remarkable complexity of the brain on a molecular, cellular and systems level is one of the major challenges in science. The principles and tools of chemistry, when combined with biology, can be used to gain new insights into the molecules and interactions involved in cellular communication and memory storage. We will describe the synergistic application of chemistry and biology to explore the structure and function of carbohydrates and their impact in various biological contexts, including neuronal communication, long-term memory and cancer.

add to favorites email to friend print save as pdf

Related Stories

Study: Sugar helps control cell division

Sep 21, 2005

Johns Hopkins scientists in Baltimore say they've discovered a deceptively simple sugar is really a critical regulator of cells' natural life cycle.

Sweet! -- sugar plays key role in cell division

Feb 05, 2010

Using an elaborate sleuthing system they developed to probe how cells manage their own division, Johns Hopkins scientists have discovered that common but hard-to-see sugar switches are partly in control.

Sugarcoating fruit fly development

May 29, 2009

Proteins are the executive agents that carry out all processes in a cell. Their activity is controlled and modified with the help of small chemical tags that can be dynamically added to and removed from the protein. 25 years ...

Recommended for you

Cells build 'cupboards' to store metals

Dec 17, 2014

Lawrence Livermore researchers in conjunction with collaborators at University of California (link is external), Los Angeles have found that some cells build intracellular compartments that allow the cell ...

Stunning zinc fireworks when egg meets sperm

Dec 15, 2014

Sparks literally fly when a sperm and an egg hit it off. The fertilized mammalian egg releases from its surface billions of zinc atoms in "zinc sparks," one wave after another, a Northwestern University-led ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

NoelPeak
not rated yet Mar 27, 2012
The article is about "blocking" this particular sugar but doesn't say how researchers blocked it binding to CREB.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.