Small-scale soil studies provide big benefits

Feb 24, 2012
Pacific Northwest National Laboratory microbiologist Vanessa Bailey is part of a team that is studying the function of microbial communities in soil.

When it comes to studying microbial communities in soil, the smaller the sample, the better. Only by approaching the scale at which microbes interact and function, the micron scale, can scientists understand how the community works. To that end, scientists at Pacific Northwest National Laboratory assayed sub-millimeter-sized soil aggregates to determine biomass and enzyme potential.

They found that across all enzymes, the smallest macroaggregates had the greatest activity.

Also, the range of enzyme activities observed in all macroaggregates supports their hypothesis that functional potential in is not uniform across aggregates, and that both "" and "cold spots" of activity are measureable; that is, the function they measured was distributed in a patchy fashion. The work is described in the journal Soil Biology and Biochemistry.

The scientists adapted four enzyme assays to single aggregates of soil so they could study habitat-relevant units. This has also enabled them to describe variability in the enzyme potential at the individual macroaggregate level. Measuring the potential activity of an enzyme in soil provides information about the soil's ability to mediate critical reactions such as those associated with and other . These ecosystem functions contribute to the soil's resistance and to environmental changes. 

Traditionally, soil microbiologists study microbial communities and processes in batch scale; that is several to hundreds of grams. Studying function at the aggregate scale, which is closer to that of microbial habitats, presents greater opportunity to link microbial community structure to function and may reveal more information about soil as a habitat for

In turn, increased understanding of microbial interactions in soil opens up myriad possibilities for land management. If scientists can learn how bacteria live and function together, the knowledge can lead to new opportunities for mitigating climate change and greenhouse gas emission or in bioremediation.

Scaling is the key. "Studying soils at the batch scale doesn't show us a microbial community," said PNNL microbiologist Dr. Vanessa Bailey. "The larger the sample, the larger the volume throughout which the microbes are distributed. And as distance between microbes increases, the likelihood of interaction decreases.

"Processes mediated by microbes occur at the micron scale," continued Bailey. "An aggregate that's less than 1 millimeter in diameter, or slightly thinner than a credit card, gets us to where the within are more likely an interacting community rather than a collection of organisms in a single sample."

To assess the functional potential at the macroaggregate scale, which ranges from 250 -1000 micrometers in diameter, the scientists developed a way to assay and enzymes in individual soil macroaggregates. They took ten adjacent soil cores from grassland at the U.S. Department of Agriculture Conservation Field, near Pullman, Washington. They used a sieve to select individual macroaggregates in three size classes: 250-425, 425-841, and 841-1000 micrometers, respectively.

They then measured microbial activity using β-glucosidase enzyme assays and microbial biomass using adenosine triphosphate, or ATP, to link biomass to cellulolytic potential. β-glucosidase is likely the rate-limiting step in cellulose degradation. Its presence is "patchy" at the small scale, meaning that microsite controls may exist that control its production and/or stabilization. Those microsite controls may include the competence of the intrinsic microbial community.

"We hope to eventually link community structure with function in a complex natural ecosystem such as soil," said Bailey. "And from that, we could have the potential to determine if there are biological rules that are constant within these microsites that will help us understand the variability of phenomena in the landscape."

Explore further: Changing global diets is vital to reducing climate change

More information: Bailey VL, et al. 2012. "Measurements of Microbial Community Activities in Individual Soil Macroaggregates." Soil Biology and Biochemistry, available online 19 January 2012.

add to favorites email to friend print save as pdf

Related Stories

Modeling microbes to manage carbon dioxide

Feb 07, 2012

(PhysOrg.com) -- In the past decade, microbiologists began realizing that communities of microbes process energy and materials, which affects their environments. To understand how microbial communities function ...

Fingerprinting fugitive dust

Jul 21, 2011

Each community of soil microbes has a unique fingerprint that can potentially be used to track soil back to its source, right down to whether it came from dust from a rural road or from a farm field, according to a U.S. Department ...

The sweet world of soil microbiology

May 01, 2008

Using classroom, hands-on activities can help instructors to communicate difficult scientific concepts and stimulate student thinking. Despite its importance, the diversity in soil microbes can conceptually be difficult to ...

Researcher seeks 'missing piece' in climate change models

Feb 13, 2007

To most people, soil is just dirt. But to microbiologists, it is a veritable zoo of bacteria, fungi and nematodes. It's also a vast carbon dioxide factory. As these microorganisms consume carbon-based materials found in soil, ...

Elevated carbon dioxide changes soil microbe mix below plants

Dec 19, 2007

A detailed analysis of soil samples taken from a forest ecosystem with artificially elevated levels of atmospheric carbon dioxide (CO2) reveals distinct changes in the mix of microorganisms living in the soil below trembling ...

Recommended for you

Changing global diets is vital to reducing climate change

14 hours ago

A new study, published today in Nature Climate Change, suggests that – if current trends continue – food production alone will reach, if not exceed, the global targets for total greenhouse gas (GHG) emissi ...

Water police on patrol in drought-scarred Los Angeles

21 hours ago

Los Angeles isn't the world's wettest city at the best of times. But a record drought has triggered extra measures—now including "water police" checking on over-zealous sprinkler users and the like.

Shell files new plan to drill in Arctic

Aug 29, 2014

Royal Dutch Shell has submitted a new plan for drilling in the Arctic offshore Alaska, more than one year after halting its program following several embarrassing mishaps.

Reducing water scarcity possible by 2050

Aug 29, 2014

Water scarcity is not a problem just for the developing world. In California, legislators are currently proposing a $7.5 billion emergency water plan to their voters; and U.S. federal officials last year ...

User comments : 0