Researchers develop new way to oxidize graphene: A step toward better electronics

Feb 19, 2012

Researchers at Northwestern University have developed a new method for chemically altering graphene, a development that could be a step toward the creation of faster, thinner, flexible electronics.

Highly desired for its many promising attributes, graphene is a one-atom thick, honeycomb-shaped of with exceptional strength and . Among graphene's many possible applications is electronics: Many experts believe it could rival silicon, transforming and leading to ultra-fast computers, cellphones and related portable .

But first, researchers must learn how to tune the electronic properties of graphene -- not an easy feat, given a major challenge intrinsic to the material. Unlike such as silicon, pure graphene is a zero band-gap material, making it difficult to electrically "turn off" the flow of current through it. Therefore, pristine graphene is not appropriate for the digital circuitry that comprises the vast majority of integrated circuits.

To overcome this problem and make graphene more functional, researchers around the world are investigating methods for chemically altering the material. The most prevalent strategy is the "Hummers method," a process developed in the 1940s that oxidizes graphene, but that method relies upon harsh acids that irreversibly damage the fabric of the graphene lattice.

Researchers at Northwestern's McCormick School of Engineering and Applied Science have recently developed a new method to oxidize graphene without the collateral damage encountered in the Hummers method. Their oxidation process is also reversible, which enables further tunability over the resulting properties of their chemically modified graphene.

The paper, "Chemically Homogeneous and Thermally Reversible Oxidation of Epitaxial Graphene," will be published Feb. 19 in the journal Nature Chemistry.

"Performing on graphene is very difficult," said Mark C. Hersam, professor of materials science and engineering at the McCormick School. "Typically, researchers employ aggressive acidic conditions, such as those utilized in the Hummers method, that damage the lattice and result in a material that is difficult to control.

"In our method, however, the resulting graphene oxide is chemically homogeneous and reversible — leading to well-controlled properties that can likely be exploited in high-performance applications," said Hersam, who is also a professor of chemistry and of medicine.

To create the graphene oxide, researchers leaked oxygen gas (O2) into an ultra-high vacuum chamber. Inside, a hot tungsten filament was heated to 1500 degrees Celsius, causing the oxygen molecules to dissociate into atomic oxygen. The highly reactive oxygen atoms then uniformly inserted into the graphene lattice.

The resulting material possesses a high degree of chemical homogeneity. Spectroscopic measurements show that the of the graphene vary as a function of oxygen coverage, suggesting that this approach can tune the properties of graphene-based devices. "It's unclear if this work will impact real-world applications overnight," Hersam said. "But it appears to be a step in the right direction."

Next, researchers will explore other means of chemically modifying graphene to develop a wider variety of materials, much like scientists did for plastics in the last century.

"Maybe oxygen isn't enough," Hersam said. "Through chemical modification, the scientific community has developed a wide range of polymers, from hard plastics to nylon. We hope to realize the same degree of tunability for ."

Explore further: Researchers make magnetic graphene

Related Stories

Seeing an atomic thickness

May 19, 2011

Scientists from NPL, in collaboration with Linkoping University, Sweden, have shown that regions of graphene of different thickness can be easily identified in ambient conditions using Electrostatic Force ...

Graphene applications in electronics and photonics

Nov 02, 2011

Graphene, which is composed of a one-atom-thick layer of carbon atoms in a honeycomb-like lattice (like atomic-scale chicken wire), is the world's thinnest material – and one of the hardest and strongest. Indeed, the ...

Light-speed nanotech: Controlling the nature of graphene

Jan 21, 2009

Researchers at Rensselaer Polytechnic Institute have discovered a new method for controlling the nature of graphene, bringing academia and industry potentially one step closer to realizing the mass production ...

Graphene's 'Big Mac' creates next generation of chips

Oct 09, 2011

The world's thinnest, strongest and most conductive material, discovered in 2004 at the University of Manchester by Professor Andre Geim and Professor Kostya Novoselov, has the potential to revolutionize material ...

Recommended for you

Researchers use oxides to flip graphene conductivity

8 hours ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

14 hours ago

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Graeme
not rated yet Feb 20, 2012
I would have called treatment by atomic oxygen as pretty harsh!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.