Making the most of what you have: Bacterium fine-tunes proteins for enhanced functionality

Feb 28, 2012

The bacterium Mycoplasma pneumoniae, which causes atypical pneumonia, is helping scientists uncover how cells make the most of limited resources. By measuring all the proteins this bacterium produces, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and collaborators, have found that the secret is fine-tuning.

Like a mechanic can fine-tune a car after it has left the factory, cells have ways to tweak proteins, changing their chemical properties after production – so-called post-translational modifications. Anne-Claude Gavin, Peer Bork and colleagues at EMBL measured how many of M. pneumoniae's proteins had certain modifications. They found that two forms of tweaking which were known to be common in our own cells are equally prevalent in this simple . Called phosphorylation and lysine acetylation, these two types of post-translational modification also talk to and interfere with each other: the scientists found that disrupting one can cause changes in the other. Since M. pneumoniae is one of the living organisms with the fewest different proteins, this interplay between phosphorylation and lysine acetylation may be a way of getting additional functions out of a limited number of proteins: by tweaking each protein in several ways, enabling it to perform a variety of tasks. And, as more complex cells like our own share the same protein-tweaking tactics, it is probably an ancient strategy that evolved before our branch of the evolutionary tree and M.pneumoniae's branched their separate ways.

The scientists also found that phosphorylation levels in M. pneumoniae control how much of each protein the bacterium has. Interestingly, it does so not only by influencing whether protein-building instructions encoded in DNA are read, but also by altering proteins that are involved in building other proteins. This fine-tuning may enable the cell to react faster to changing needs or situations.

When they disrupted M. pneumoniae's ability to tweak proteins, Gavin, Bork and colleagues also discovered that disaster doesn't necessarily ensue. As in our own , proteins in this bacterium rarely work alone. They interact with each other, work together, or perform different steps in chain reactions. The scientists found that these protein networks have a certain buffering ability: disrupting one can affect its immediate partners, but the problems may not propagate throughout the whole network. The scientists hope that mapping the different networks may one day enable them to predict where a targeted disruption might do the most damage, which could eventually provide valuable information for drug design.

The work, published online today in Molecular Systems Biology, was conducted in collaboration with the Centro de Regulacion Genomica in Barcelona, Spain, Utrecht University in the Netherlands, and Georg-August University Göttingen and Heidelberg University, both in Germany.

The study follows up on work published in 3 back-to-back papers in Science in 2009.

Explore further: New lab technique reveals structure and function of proteins critical in DNA repair

Related Stories

Casting the molecular net

Jun 14, 2007

Scientists at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital (Canada), European Molecular Biology Laboratory (Germany), and Massachusetts Institute of Technology (USA) have created a new computational method ...

Simplest bacteria unravelled at the cellular level

Dec 28, 2009

Even the simplest cell appears to be far more complex than researchers had imagined. In a series of three articles in the journal Science, researchers including Vera van Noort at the European Molecular Biology Laboratory (EMBL) ...

Recommended for you

The mechanics of life

Apr 16, 2015

An interdisciplinary research team formed by Otger Campàs, assistant professor in the Department of Mechanical Engineering at the University of California, Santa Barbara (UCSB), and colleague Jérome Gros, ...

New transitional stem cells discovered

Apr 16, 2015

Pre-eclampsia is a disease that affects 5 to 8 percent of pregnancies in America. Complications from this disease can lead to emergency cesarean sections early in pregnancies to save the lives of the infants and mothers. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.