Scientists study protein dynamical transitions

Dec 15, 2011

(PhysOrg.com) -- Central to life and all cellular functions, proteins are complex structures that are anything but static, though often illustrated as two-dimensional snapshots in time.

Cornell scientists, using the Cornell High Energy Synchrotron Source (CHESS), have gained new insight into the underlying mechanisms of how protein structures change at low temperatures. Their paper, whose first author is CHESS staff scientist Chae Un Kim, was published online Dec. 12 in . Kim's co-authors are Mark Tate, senior research associate in the Laboratory of Atomics and ; and Sol Gruner, professor of physics and CHESS director.

Proteins fluctuate in biological functions ranging from enzymatic catalysis to interactions with other molecules, including DNA. When they are cooled, the fluctuations dampen and eventually stop, typically between -70 and -30 degrees Celsius (-94 to -22 Fahrenheit); this is called a protein dynamical transition. The underlying physical origin of this transition had been poorly understood in the past, although water was thought to be involved.

In their experiments, the researchers observed such a transition at -160 degrees Celsius (-256 Fahrenheit) -- a much lower temperature -- in a protein crystal when cryogenically cooled water confined in the crystal underwent unusual .

The protein crystal samples were treated by the researchers' own high-pressure cryo-cooling method. The samples were frozen to liquid nitrogen temperatures (-196 C, -320 F) in pressurized to 2,000 atmospheres. Previously, they had shown this method induces an unusual, high-density amorphous state of water, and, upon warming, it transforms to low-density amorphous ice.

The protein dynamical transition was then probed at CHESS by temperature-controlled X-ray , which is typically used to measure the distribution of fluctuation states of a protein. The researchers observed that the fluctuation states suddenly increased as the water underwent the high-density to low-density transition.

The change in the state of water gave the proteins freedom to fluctuate and wiggle. This suggested that the protein dynamical transition was enabled by motional freedom provided by the surrounding water.

In the past, similar studies had been hampered by spontaneous crystallization of water into ice. The researchers' novel high-pressure method bypasses this problem to allow probing of protein dynamics and the relationship to the phase behavior of water at cryogenic temperatures. The results provide evidence that the physical origin of a protein dynamical transition is driven by water fluctuations, and they also provide insights into the unusual physical properties of supercooled .

Explore further: Researchers discover new strategy germs use to invade cells

add to favorites email to friend print save as pdf

Related Stories

Water can flow below -130 C

Jun 28, 2011

When water is cooled below zero degrees, it usually crystallizes directly into ice. Ove Andersson, a physicist at Umea University, has now managed to produce sluggishly flowing water at 130 degree below zero ...

Revealing water's secrets

Aug 01, 2011

We drink it, swim in it, and our bodies are largely made of it. But as ubiquitous as water is, there is much that science still doesn't understand about this life-sustaining substance.

Sneaking up on the glassy transition of water

Sep 26, 2011

Rapid cooling of ordinary water or compression of ordinary ice: either of these can transform normal H2O into an exotic substance that resembles glass in its transparency, brittleness, hardness, and luster. Unlike everyday ...

New observations on properties of water

Dec 13, 2006

Experimental studies conducted by Ph.D. Anatoli Bogdan at the University of Helsinki, Finland, have received broad interest in the scientific world, as the results might have applications even in the cryopreservation of cells ...

Recommended for you

Researchers discover new strategy germs use to invade cells

9 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

9 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0