The art of stabilizing entangled spaghetti-like materials

November 28, 2011

Gene therapy can only be effective if delivered by a stable complex molecule. Now, scientists have determined the conditions that would stabilise complex molecular structures that are subject to inherent attractions and repulsions triggered by electric charges at the surfaces of the molecules, in a study about to be published in European Physical Journal E, by Valentina Mengarelli and her colleagues from the Solid State Physics Laboratory at the Paris-Sud University in Orsay, France, in collaboration with Paris 7 and Evry Universities scientists.

The authors studied soluble complexes made of negatively charged DNA or another negatively charged polymer – polystyrene-sulfonate (PSSNa) – and a so-called condensation agent, which is a negatively charged polymer, known as linear polyethyleneimine (PEI). PEI participates in the condensation process by tying onto a molecule such as DNA, like tangled hair, to form an overall positively charged DNA/polymer complex structure.

Previous research focused mainly on non-soluble complexes, while the few attempts at focusing on soluble complexes dealt either with smaller polymers or those with a weaker electric charge, which may therefore be easier to stabilise.

The French team thus confirmed experimentally that the complexation process does not depend on the rigidity of the original molecule, be it DNA or PSSNa, but on the positive/negative electric charge ratio and on the polymer concentrations. It is the interactions between electrically charged parts within the complex that govern its properties. When the condensation agent is in excess, the positively charged complex is then attracted to negatively charged biological cell membranes. This could be used to deliver the DNA into a targeted cell nucleus as part of treatment.

Future work will focus on using long DNA molecules and novel polymers to form complexes of controlled size and for gene therapy.

Explore further: Self-assembly generates more versatile scaffolds for crystal growth

More information: Charge inversion, condensation and decondensation of DNA and Polystyrene sulfonate by polyethylenimine, Mengarelli V, Auvray L, Pastré D, and Zeghal M, European Physical Journal E (EPJE) 34, 127, DOI 10.1140/epje/i2011/11127-3

Related Stories

Getting DNA to self-assemble

August 25, 2005

University of Illinois researchers have developed new ways to get DNA to self-assemble into various kinds of structures.

New synthetic self-assembling macromolecules mimic nature

March 19, 2007

We take "self-assembly" for granted when it is carried out by the biopolymers which are our hair, teeth, or skin. But when scientists devise new ways for molecules to self assemble into new materials, it is an important achievement.

Recommended for you

Doubling down on Schrödinger's cat

May 26, 2016

Yale physicists have given Schrödinger's famous cat a second box to play in, and the result may help further the quest for reliable quantum computing.

Possible case for fifth force of nature

May 26, 2016

A team of physicists at the University of California has uploaded a paper to the arXiv preprint server in which they suggest that work done by a team in Hungary last year might have revealed the existence of a fifth force ...

Optics breakthrough to revamp night vision

May 24, 2016

A breakthrough by an Australian collaboration of researchers could make infra-red technology easy-to-use and cheap, potentially saving millions of dollars in defense and other areas using sensing devices, and boosting applications ...

First movies of droplets getting blown up by x-ray laser

May 24, 2016

Researchers have made the first microscopic movies of liquids getting vaporized by the world's brightest X-ray laser at the Department of Energy's SLAC National Accelerator Laboratory. The new data could lead to better and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.