New complex offers potentially safer alternative for gene therapy delivery

September 8, 2011

Spontaneous ordering of DNA fragments in a special matrix holds the key to creating non-toxic gene therapy delivery vectors, according to a study recently published in the European Physical Journal E.

Scientists from the CNRS Paul Pascal Research Centre, an institute of the University of Bordeaux, France, and colleagues from the Institute of Physics at the University of Sao Paolo, have created a complex system designed to hold DNA fragments in solution between the hydrophilic layers of a matrix of fatty substances (also known as lipids) combined with a surfactant (used to soften the layers' rigidity). One possible application that has yet to be tested is gene therapy.

Although gene therapy was initially delivered using , recent attempts at devising alternative vectors have exploited positively charged lipids to form complex structures holding DNA fragments with . However the positively charged ions, known as cations, used in this type of vector have proven toxic for .

Until now, only positively charged fatty substance were thought capable of holding DNA in a complex vector. The authors of this study have proved otherwise by creating an electrically neutral matrix, structured like a multi-layered cake, which holds the DNA fragments at a high concentration in solution between the layers.

The authors found that within the complex self-organise over time. These fragments spontaneously align parallel to one another and form rectangular and hexagonal structures across the layers. The change of atomic-level interactions within the layers and the appearance of interactions at the interface between the layers and the may explain the emergence of ordered structures at high DNA concentrations.

The next step of this research involves elucidating the precise physical forces that hold the complex together. Applications of such technology go beyond vector design, as the same principle can be applied for the delivery of other particles such as chemical drugs.

Explore further: Self-assembly generates more versatile scaffolds for crystal growth

More information: Supramolecular polymorphism of DNA in non-cationic L_α lipid phases. European Physical Journal E. L. Navailles et al. Volume 34, Number 8, 83, DOI: 10.1140/epje/i2011-11083-x

Related Stories

Getting DNA to self-assemble

August 25, 2005

University of Illinois researchers have developed new ways to get DNA to self-assemble into various kinds of structures.

New research may help to design better gene therapy vectors

October 7, 2008

(PhysOrg.com) -- Research published by scientists from the University of Reading may offer an insight into ways of making safer and more specific gene therapy vectors. The research, published in the journal Nature Structural ...

Safer, more effective gene therapy

June 26, 2008

Athens, Ga. – The potential of gene therapy has long been hampered by the risks associated with using viruses as vectors to deliver healthy genes, but a new University of Georgia study helps bring scientists closer to a ...

Moving gene therapy forward with mobile DNA

May 3, 2009

Gene therapy is the introduction of genetic material into a patient's cells resulting in a cure or a therapeutic effect. In recent years, it has been shown that gene therapy is a promising technology to treat or even cure ...

Recommended for you

Energy-saving LEDs boost light pollution worldwide

November 22, 2017

They were supposed to bring about an energy revolution—but the popularity of LED lights is driving an increase in light pollution worldwide, with dire consequences for human and animal health, researchers said Wednesday.

Re-cloning of first cloned dog deemed successful thus far

November 22, 2017

(Phys.org)—A team of researchers with Seoul National University, Michigan State University and the University of Illinois at Urbana-Champaign has re-cloned the first dog to be cloned. In their paper published in the journal ...

Testing the advantage of being left-handed in sports

November 22, 2017

(Phys.org)—Sports scientist Florian Loffing with the Institute of Sport Science, University of Oldenburg in Germany has conducted a study regarding the possibility of left-handed athletes having an advantage over their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.