Researchers study Terahertz radiation's impact on cellular function and gene expression

September 13, 2011

Terahertz (THz) technologies show promise for myriad medical, military, security, and research applications ranging from the detection of cancer to airport security systems to shipment inspection to spectroscopy. Relatively little is known, however, about the effect of THz radiation on biological systems. So a team of researchers, led by Los Alamos National Laboratory, evaluated the cellular response of mouse stem cells exposed to THz radiation. They applied low-power radiation both from a pulsed broadband (centered at 10 THz) source and from a continuous wave (CW) laser (2.52 THz) source, and applied both modeling and empirical characterization and monitoring techniques to minimize the impact of radiation-induced increases in temperature.

The researchers determined that temperature increases were minimal, and that expression was unaffected, while the expression of certain other genes showed clear effects of the THz irradiation. As the researchers describe in the September issue of the Optical Society's (OSA) open-access journal Biomedical , mouse mesenchymal stem cells exposed to THz radiation exhibit specific changes in cellular function closely related to the gene expression. They believe further investigations involving a large number of genes and variation in THz radiation characteristics and exposure duration are needed to generalize their findings. They also say that more direct experimental investigations of THz radiation's ability to induce specific openings of the DNA double strand are needed to fully determine how THz radiation may work through DNA dynamics to influence cellular function.

The team, led by Los Alamos National Lab, worked in collaboration with the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos and Sandia National Laboratories, and with Harvard Medical School, and Beth Israel Deaconess Medical Center.

Explore further: Torch-sized devices will detect disease and weapons

More information: "Non-thermal effects of terahertz radiation on gene expression in mouse stem cells," Biomedical Optics Express, Alexandrov et al., Volume 2, Issue 9, pp. 2679-2689. www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-9-2679

Related Stories

Torch-sized devices will detect disease and weapons

October 10, 2005

Researchers at the University of Essex have been awarded almost £1.2 million as part of a programme to develop a new generation of portable, handheld radiation detectors that could have a range of potential applications ...

Terahertz-controlling device is built

December 4, 2006

U.S. government scientists say they've built a device that can manipulate terahertz radiation, perhaps leading to new imaging and communications devices.

Terahertz imaging goes the distance

April 26, 2007

Terahertz (THz) radiation, or far-infrared light, is potentially very useful for security applications, as it can penetrate clothing and other materials to provide images of concealed weapons, drugs, or other objects. However, ...

Keeping an eye on the surroundings

August 13, 2008

Water is no passive spectator of biological processes; it is an active participant. Protein folding is thus a self-organized process in which the actions of the solvent play a key role. So far, the emphasis in studies of ...

Checking people at airports -- with terahertz radiation

September 18, 2008

Within the last few years the number of transport checks – above all at airports – has been increased considerably. A worthwhile effort as, after all, it concerns the protection of passengers. Possibilities for new and ...

Recommended for you

ATLAS and CMS experiments shed light on Higgs properties

September 1, 2015

Three years after the announcement of the discovery of a new particle, the so-called Higgs boson, the ATLAS and CMS Collaborations present for the first time combined measurements of many of its properties, at the third annual ...

Tiny drops of early universe 'perfect' fluid

September 1, 2015

The Relativistic Heavy Ion Collider (RHIC), a particle collider for nuclear physics research at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, smashes large nuclei together at close to the speed of ...

New material science research may advance tech tools

August 31, 2015

Hard, complex materials with many components are used to fabricate some of today's most advanced technology tools. However, little is still known about how the properties of these materials change under specific temperatures, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.