T-rays: New imaging technology spotlighted by American Chemical Society

December 6, 2005

T-ray sensing and imaging technology, which can spot cracks in space shuttle foam, see biological agents through a sealed envelope and detect tumors without harmful radiation, was the focus of a recent symposium at the national meeting of the American Chemical Society.

The session was organized and chaired by experts Charles A. Schmuttenmaer, professor of chemistry at Yale, and Xi-Cheng Zhang, professor and director of the Center for Terahertz Research at Rensselaer Polytechnic Institute. Twelve speakers introduced analytic applications of terahertz spectroscopy to the analytical chemistry community.

T-rays are based on the terahertz (THz) region of the electromagnetic spectrum that is between infrared light and microwave radiation. Until recently, researchers have had great difficulty harnessing the potential of the THz region for lack of suitable radiation sources. Advanced materials research has provided new and higher power sources, and interest in THz sensing and imaging has exploded as a result.

Objects at room temperature emit thermal energy in the THz range that can be used to sense and image objects. A particular advantage of T-ray systems is that they can also give spectroscopic information about the composition of chemical and biological material, and are safer for biological applications than X-ray photons, that emit a million times more energy.

Advances presented allow sensing of extremely small objects on the nanometer scale, as well as at large distances of more than 100 meters -- an essential improvement for national security applications such as remote sensing of explosives. In conjunction with NASA, THz imaging has also successfully detected defects in space shuttle foam. Other T-ray applications could enable the label-free characterization of genetic material, detect a C-4 explosive hidden in the mail, and help researchers understand the complex dynamics involved in protein folding.

Schmuttenmaer's research uses THz technology to determine characteristics of photo-excited reactions, information that cannot be acquired with any other technique. "We have also devised a system that captures the THz pulse emitted during rapid intramolecular charge transfer using two different dye molecules," he said. "In the future we will use this method to probe photosynthetic and bacterial reaction centers, and perhaps DNA."

Source: Yale University

Explore further: On-chip observation of THz graphene plasmons

Related Stories

On-chip observation of THz graphene plasmons

November 4, 2016

Researchers developed a technique for imaging THz photocurrents with nanoscale resolution, and applied it to visualize strongly compressed THz waves (plasmons) in a graphene photodetector. The extremely short wavelengths ...

Laser researchers boldly go into uncharted THz territory

October 31, 2016

Once the preferred weapon of B-movie madmen and space-fiction heroes alike, the laser—a device that generates an intense beam of coherent electromagnetic radiation by stimulating the emission of photons from excited atoms ...

Optical clock technology tested in space for first time

November 17, 2016

For the first time, an optical clock has traveled to space, surviving harsh rocket launch conditions and successfully operating under the microgravity that would be experienced on a satellite. This demonstration brings optical ...

A revolutionary breakthrough in terahertz remote sensing

July 11, 2010

(PhysOrg.com) -- A major breakthrough in remote wave sensing by a team of Rensselaer Polytechnic Institute researchers opens the way for detecting hidden explosives, chemical, biological agents and illegal drugs from a distance ...

Photonics: strong vibrations

May 10, 2012

A new approach to generating terahertz radiation will lead to new imaging and sensing applications. The low energy of the radiation means that it can pass through materials that are otherwise opaque, opening up uses in imaging ...

Recommended for you

Three new gas giant exoplanets discovered by SuperWASP-South

January 18, 2017

(Phys.org)—Astronomers report the discovery of three new gas giant planets using the SuperWASP-South Observatory in South Africa. Two of the newly detected alien worlds were classified as the so-called "warm Jupiters," ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.