A stem cell target for expanding waistlines?

Jun 16, 2011

Researchers may have found the key to developing a method to rid the body of stem cells responsible for driving fat expansion. According to a report in the June 16 Cell Stem Cell, a Cell Press publication, they've landed the first protein marker on the surface of those so-called adipose stromal cells (ASCs), which serve as progenitors of the cells that make up fat tissue.

"Our long-term goal is to identify an approach to inactivate these cells in disease," said Mikhail Kolonin of University of Texas Health Science Center at Houston. "By administering a peptide with a toxin to ASCs, we could deplete these cells." In past studies, he has used a similar approach to develop a therapy targeting the that feed fat tissue.

The first step to targeting ASCs was to find a marker on their surfaces that uniquely identifies them. The method the research team developed relies on billions of each displaying a different peptide on its outer coat. The goal was to find one or more that binds specifically to ASCs in live mice and to then use it as "bait" to isolate the target receptor.

That exercise led them to a previously undescribed fragment of decorin, a multifunctional protein regulating , proliferation, and migration. Interestingly, the team shows that this new marker (referred to as delta-decorin) interacts with a hormone known as resistin. Despite resistin's fame in scientific circles for its connection to obesity and , its receptor had remained elusive.

"The expansion of fat tissue is the foundation of obesity," Kolonin said. "For that to happen, you need progenitors to proliferate and spread around." The effects of resistin in ASCs, acting via decorin, appear to be responsible.

The findings may have other benefits as well. Although ASCs may be part of the problem in the case of obesity, they can also be harvested for use in regenerative therapies and hundreds of clinical trials are now underway. "The lack of markers for the cells has been limiting in the clinical context," Kolonin explained, because it has made it difficult to tell whether administered cells are stable and whether they end up where they should be.

"These cells can be useful, but they are also potentially dangerous," he said, noting that they've been linked to cancer progression. The new findings show it is possible to direct probes to in vivo in an organ-specific manner. In the future, the identified cell surface biomarker can be exploited for imaging or therapeutic ASC targeting.

But there is more work to do. "While identification of decorin as a prospective ASC marker makes a step toward stem cell targeting applications, cell surface molecules differentially expressed on progenitor cells in other organs are yet to be identified," the researchers write. "Other isolated in our study, based on their homing to lung, muscle, and bone marrow stromal cells, set the foundation for subsequent identification of protein interactions marking stromal of these organs."

Explore further: Cell division speed influences gene architecture

More information: Daquinag et al.: “An Isoform of Decorin Is a Resistin Receptor on the Surface of Adipose Progenitor Cells.” Cell Stem Cell July 8, 2011.

Related Stories

Scientists uncover the potential to control adult stem cells

Apr 10, 2008

Research being presented today at the UK National Stem Cell Network Annual Science Meeting in Edinburgh represents a step towards the use of Adult Stem Cells (ASCs) to repair damaged tissue. Speaking at the conference in ...

Fat-regenerating 'stem cells' found in mice

Oct 10, 2008

Researchers have identified stem cells with the capacity to build fat, according to a report in the October 17th issue of the journal Cell, a Cell Press publication. Although they have yet to show that the cells can renew ...

Scientists isolate cancer stem cells

Sep 11, 2008

After years of working toward this goal, scientists at the OU Cancer Institute have found a way to isolate cancer stem cells in tumors so they can target the cells and kill them, keeping cancer from returning.

Human virus makes fat stem cells fatter

Oct 25, 2006

U.S. research showing how a human virus targets fat stem cells to produce more, fatter, fat cells is providing insights into the study of obesity.

Recommended for you

Ocean microbes display remarkable genetic diversity

24 minutes ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

2 hours ago

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Cell division speed influences gene architecture

Apr 23, 2014

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...