Researchers report progress using iPS cells to reverse blindness

Jun 15, 2011
Human-induced pluripotent stem (iPS) cells can be directed to develop into light-sensing photoreceptor cells of the retina. It is hoped that these cells can be used to better understand and treat human disease affecting the visual system. Credit: Jason Meyer, Ph.D., School of Science at Indiana University-Purdue University Indianapolis

Researchers have used cutting-edge stem cell technology to correct a genetic defect present in a rare blinding disorder, another step on a promising path that may one day lead to therapies to reverse blindness caused by common retinal diseases such as macular degeneration and retinitis pigmentosa which affect millions of individuals.

In a study appearing in an advance online publication of the journal Stem Cells on June 15, 2011, investigators used recently developed technology to generate induced pluripotent stem (iPS) cells from a human patient with an uncommon inherited eye disease known as gyrate atrophy. This disorder affects retinal (RPE) cells, the cells critical to the support of the retina's , which function in the transmission of messages from the retina to parts of the brain that interpret images.

"When we generate iPS cells, correct the gene defect that is responsible for this disease, and guide these stem cells to become RPE cells, these RPE cells functioned normally. This is exciting because it demonstrates we can fix something that is out of order. It also supports our belief that in the future, one might be able to use this approach for replacement of cells lost or malfunctioning due to other more of the retina," said lead study author cell biologist Jason Meyer, Ph.D., assistant professor of biology in the School of Science at Indiana University-Purdue University Indianapolis.

Macular degeneration is the most common cause of blindness, affecting an estimated 25-30 million people worldwide. One and a half million people worldwide are affected by .

Because iPS cells can be derived from the specific patient who needs them, use of these cells may avoid the problem of . In the study, vitamin B-6 also was used to treat the damaged RPE cells producing healthy cells that functioned normally.
The retina is a relatively easily accessible part of the central nervous system, which makes it an attractive target for correction with iPS cells. Researchers are hopeful that once the gene defect responsible for a blinding disorder is corrected in iPS cells, these cells may be able to restore vision.

Explore further: Ocean microbes display remarkable genetic diversity

Related Stories

Scientists successfully awaken sleeping stem cells

Mar 18, 2008

Scientists at Schepens Eye Research Institute have discovered what chemical in the eye triggers the dormant capacity of certain non-neuronal cells to transform into progenitor cells, a stem-like cell that can generate new ...

Recommended for you

Ocean microbes display remarkable genetic diversity

3 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

5 hours ago

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Cell division speed influences gene architecture

Apr 23, 2014

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

One in 13 US schoolkids takes psych meds

(HealthDay)—More than 7 percent of American schoolchildren are taking at least one medication for emotional or behavioral difficulties, a new government report shows.

FDA reconsiders behavior-modifying 'shock devices'

(HealthDay)—They're likened to a dog's "shock collar" by some and called a "life-saving treatment" by others. But the days of electro-shock devices as a tool for managing hard-to-control behavior in people ...

Computer program could help solve arson cases

Sifting through the chemical clues left behind by arson is delicate, time-consuming work, but University of Alberta researchers teaming with RCMP scientists in Canada, have found a way to speed the process.