Birds 'flap run' instead if flying over obstacles to save energy

Jun 23, 2011

Why don't you ever see baby pigeons? For the same reason you don't see many chicks: they can't fly. It can take months for their partially developed wings and flight muscles to become airworthy, and by then the youngsters are almost fullygrown. However, long before their maiden flight, pigeon chicks probably put their developing wings to use, flapping as they run up steep branches.

Brandon Jackson from the University of Montana, USA, explains that Ken Dial and his son first noticed this strange behaviour when filming chuckar chicks negotiating obstacles: instead of flying over, the birds ran up the object flapping their wings. And when Dial discussed this behaviour with local ranchers and hunters, some described adult chukars flapping to run up cliffs. So why do adult birds flap and run up steep objects when they are perfectly capable of flying? Jackson, Dial and their colleague Bret Tobalske wondered whether pigeons might use 'flap running' to save energy, so they measured the amount of power generated by the flight muscles of flap running and flying birds and found that flap running birds use less than 10% of the energy of birds flying at the same angle. The publish their discovery in The .

First, the team familiarised the birds with the ramps they were to ascend and trained them to fly to a perch so that they could compare the muscle power output from the flight muscle as the birds 'flap ran' and as they flew up at the same angle. Then they implanted sensors into the birds' wing and flight muscle to measure the power output and . Finally, the team filmed the birds as they flap ran up an almost vertical ramp (85deg) and a steep ramp at 65deg, and flew at various take-off angles to the perch.

Watching the muscle activity trace as the birds flap ran up the 65deg incline, the team could barely see any in the flight muscle. 'We thought, "It's flapping, there must be activity," so we zoomed in on the computer screen and there was the signal, it was just over an order of magnitude smaller in amplitude,' recalls Jackson. The birds seemed to be using hardly any power to flap their wings as they ran up the slopes. And when the trio calculated the power produced by the flapping flight muscle, it was less than 10% of the power required for the bird to fly at the same angle. The flap running birds were making significant power savings in their flight muscles by flap running up slopes. The team also realised that the adults only increased their flight output by small increments as the slope angle increased.

'The basic story comes out that once you can run up a nearly vertical substrate your muscle and wings are ready to control your descent. They are ready even to fly on the level,' says Jackson. So, by building up slowly from flap running up shallow inclines to ascending steeper slopes, flap running could be an essential stage in chicks learning to fly, allowing them to build up their muscles gradually before the first take off. Jackson also adds that flap running could have been a key stage in the evolution of flight.

'At some point came from bipedal dinosaurs with small forelimbs that evolved into small wings,' explains Jackson. Knowing that archaeopteryx's flight muscles were probably too small to power flight, he suggests that they may have been large enough to help it flap run up steep obstacles. So, just as flap running appears to be a key stage in learning to fly, it could also have been a major breakthrough in the evolution of flight.

Explore further: Genetic secrets of the monarch butterfly revealed

More information: Jackson, B. E., Tobalske, B. W. and Dial, K. P. (2011) The broad range of contractile behaviour of the avian pectoralis: functional and evolutionary implications. J. Exp. Biol. 214, 2354-2361. http://jeb.biologists.org/content/214/14/2354.abstract

Related Stories

Birds: Soaring is better than flapping

Dec 08, 2010

Large birds, such as storks, save energy on the flight to their wintering grounds by soaring through the air on thermal currents. Until now, however, we knew nothing about the flight patterns of small migrating ...

Feathers too weak for early bird flight

May 13, 2010

(PhysOrg.com) -- The evolution of flight took longer than previously thought with the ancestors of modern birds “rubbish” at flying, if they flew at all, according to a Manchester scientist.

Want to fly? Don't copy the birds and the bees

Jul 06, 2008

Since earliest recorded history, and presumably beyond, humans have always wanted to fly. First attempts involved imitation of winged creatures around them, and unfailingly ended in disaster.

Scientists start to unlock secrets of bird flight

Apr 09, 2009

(AP) -- For millennia, people have watched the birds and bees and wondered: "How do they do that?" Thanks to high-speed film and some persistent scientists, at least one of the secrets of flight is now revealed. ...

Recommended for you

Kimberley survey nets plenty of crocs

1 hour ago

Parks and Wildlife officers have conducted a capture and release survey of freshwater crocodiles (Crocodylus johnsoni) with Bunuba Rangers at Winjanna Gorge National Park in the West Kimberley in preparation ...

Study shows sharks have personalities

15 hours ago

Some sharks are 'gregarious' and have strong social connections, whilst others are more solitary and prefer to remain inconspicuous, according to a new study which is the first to show that the notorious ...

Genetic secrets of the monarch butterfly revealed

21 hours ago

The monarch butterfly is one of the most iconic insects in the world, best known for its distinct orange and black wings and a spectacular annual mass migration across North America. However, little has been ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Skepticus
not rated yet Jun 23, 2011
We humans are too weak to fly with the muscle strength on our arms. Well, with this discovery, does it mean we can theoretically "flap our way up" 60-80 degrees slope with suitable wings, since it reduces the power requirement by 90%? If it is true, expect to see stuntmens in movies running up walls without the magic of wire-fu!
A_Paradox
5 / 5 (1) Jun 23, 2011
Skepticus,
I think your stunt men will mostly be doing comedy routines.
Those neo-avionic dinosaurs would almost certainly have had a much higher power to weight ratio than even the buffest humans. I suspect they were nearly bipedal and also had feathers which had evolved to keep them warm, and as courting display and camouflage devices. The combination of those pre-disposing factors allowed them to discover and benefit from the life saving ability of running up very steep tree trunks and embankments. I have read somewhere else, a long time ago actually, that there are good theoretical reasons to believe that the symmetrical flapping of the forearms may have evolved first in this context to provide *negative* lift, ie in order to keep the running animal firmly gripping the tree so it could just run like hell and escape up the nearest tree trunk.

Presumably being able to run up a vertical trunk as easily as along the ground was heaps better than climbing.