Wireless sensor network monitors microclimate in the forest

May 11, 2011
A wireless sensor network records data such as soil and leaf humidity, as well as air temperature. Credit: Fraunhofer IMS

During a forest monitoring operation, forestry scientists measure various environmental values. This is how they obtain indications about how the forests are changing and what can be done to preserve them. However, installing and maintaining the wired measuring stations is complex: Researchers developed a wireless alternative.

What effect does have on our local forests? What types of trees will be suitable for which ? And how great is the here? Forestry are conducting „ monitoring” procedures: They continuously record parameters such as soil humidity or pollutant penetration at permanently installed monitoring stations. The results of such examinations contribute to maintaining the ecological stability of the forests over the long term. The problem: Not only are the wired measuring devices complex to install and maintain, they also hinder silvicultural work in the forest.

In the future, technologies from the Fraunhofer Institute for Microelectronic Circuits and Systems IMS could enable differentiated analysis without any bothersome cables. Scientist from the institute in Duisburg installed a new type of system for microclimatic monitoring on the grounds of the Northwest German Forestry Testing Facility in Göttingen, Germany. “We are using a wireless sensor network so we can measure relevant parameters within an area at many sites simultaneously,” explains Hans-Christian Müller, group manager at the IMS. This way, we receive a very detailed picture about the environmental conditions on site, without much installation effort. Depending on which values they are to measure – for example, soil moisture content, air temperature or the moisture in the leaves – different sensor nodes are inserted into the soil or affixed to branches. If required, the measuring positions can be changed without much effort. The intelligent mini-computers automatically form a network and control the transmission of measurement data within this network. The results are transmitted by cellular radio to a central tree stock database. To facilitate this, a mobile cellular modem is connected directly to the sensor network.

Providing power to the sensor nodes poses a particular challenge. Mounting solar cells to the sensors – a favored solution in other agrarian and forestry applications – is not an option due to the low penetration of sunlight under the leafy canopy of the trees. That‘s why, to date, there has been no alternative to batteries that have to be replaced regularly. Researchers, however, managed to significantly increase battery life, keeping maintenance requirements within reasonable limits: “We adapted the software design accordingly and now have operating times of 12 months,“ says Müller. A software solution integrated into the sensors ensures that the radio nodes are for the most part in an energy-saving sleep mode. They are active only during the measurement and data transmission process. The measurement intervals can be set to be variable. Parameters that change slowly such assoil moisture need not be measured as often as air temperature, for example, which is subject to larger variations. Since data transmission requires the most energy, the measurement values are calculated as early as the sensor node. This reduces the data volume.

The new technology is already in use in Göttingen as part of the joint project "Smart Forest". The project aims to optimize forestry processes with the aid of microelectronic components. The researchers from IZM will be introducing their results on the “Smart Forests” as well as other developments on the industrial application of wireless sensor networks at the Messe Sensor + Test tradeshow from June 7 – 9 in Nuremberg, Germany, in Hall 12, Booth 231.

Explore further: Sweeping air devices for greener planes

add to favorites email to friend print save as pdf

Related Stories

Rainforest rehab in every sense

Jun 12, 2009

Sophisticated sensors that measure leaf wetness, soil moisture and temperature are helping rehabilitate rainforest in the Springbrook World Heritage precinct in south-east Queensland.

Crash sensor boosts safety in warehouses

Apr 01, 2011

For reasons of workplace safety, storage shelves in warehouses are subjected to routine testing of their stability. These inspection rounds are time-consuming and deliver just a snapshot in time. Researchers ...

Install and Forget: Batteryless Radio Sensors

Mar 03, 2010

Siemens has developed a variety of energy autarkic radio sensors that draw the energy they require for operation from their surroundings. The technology can be used to automatically monitor facilities in remote ...

Sensors that can stretch

May 11, 2011

Is someone sitting in the passenger seat of the car? Did someone enter the safety zone in front of an industrial machine? Stretch and pressure sensors have a wide range of applications. Researchers have now ...

Finding reserves on the electrical grid

May 11, 2011

The weather determines how much energy wind turbine systems provide. The same applies to power line capacity. On cold and stormy days, this capacity is higher than on days with no wind and high mid-summer ...

Hotline to the cowshed

Sep 08, 2008

A wireless measuring system, consisting of sensors and transmission units, helps to keep livestock healthier with a minimum use of resources.

Recommended for you

Sweeping air devices for greener planes

6 hours ago

The large amount of jet fuel required to fly an airplane from point A to point B can have negative impacts on the environment and—as higher fuel costs contribute to rising ticket prices—a traveler's wallet. ...

User comments : 0