Titanium oxide doped with cobalt produces magnetic properties at room temperature

Apr 22, 2011
Figure 1: A representation of a thin film of Co:TiO2 in which ferromagnetism arises because titanium 3d electrons (green) travel around the material aligning the spin of cobalt atoms (pink) so that they all point in the same direction. The blue and brown spheres correspond to titanium and oxygen atoms, respectively. Credit: 2011 Takumi Ohtsuki

(PhysOrg.com) -- Spintronics — also known as magnetoelectronics — may replace electronics as the medium of choice for computer memory. The discovery of a mechanism that produces permanent magnets at room temperature, without any external influence, may soon improve the design of spintronic devices. Takumi Ohtsuki from the RIKEN SPring-8 Center, Harima and his colleagues in Japan, made the discovery in a class of material called a dilute ferromagnetic oxide.

Ferromagnetism is the mechanism responsible for making some materials magnetic without any external influence. In a ferromagnet, the axes about which a majority of the spin are all parallel, but the underlying cause for this alignment is not always clear. A dilute ferromagnetic oxide is an oxide material doped with a small amount of a transition metal, which represents a marriage between magnetic materials and those used in electronics. Crucially, and unlike the ferromagnetic-semiconductors, dilute ferromagnetic oxides remain in a ferromagnetic state at room temperature. 

Some materials have ferromagnetic constituents but exhibit no magnetism. However, some ferromagnets consist of substances that, on their own, are nonmagnetic. A full understanding of this enigma is vital for designing efficient spintronic devices and requires determining which electrons, or other type of charge carrier in a material, mediate the ferromagnetism. To resolve this question in dilute ferromagnetic oxides, Ohtsuki and his co-workers examined one commonly used example: cobalt-doped titanium dioxide (Co:TiO2). “Several mechanisms have been suggested for the origin of ferromagnetism in Co:TiO2, but no firm conclusion has been established,” says Ohtsuki. 

The researchers used a powerful material characterization technique known as x-ray photoemission spectroscopy. A beam of x-rays, in this case from the SPring-8 synchrotron radiation facility, excited electrons from the sample of Co:TiO2. “The number of excited electrons versus their kinetic energies provided detailed information about the atomic composition and electronic state of the material,” explains Ohtsuki. 

Ohtsuki and his team established that ferromagnetism is mediated by the electrons in the third shell—so-called 3d electrons—of the titanium ions (Fig. 1), a mechanism that has never been considered as a possibility by scientists before. The titanium 3d electrons align the spin of the atoms as they travel through the material.

The team’s discovery enhances the likelihood that dilute ferromagnetic oxides will be used as spintronic devices. “Our results have proven that magnetism and conductivity are correlated in Co:TiO2 thin films,” explains Ohtsuki. “This could make them applicable to magnetic random access memory (MRAM) or spin transistors.”

Explore further: X-rays probe LHC for cause of short circuit

More information: Ohtsuki, T., et al. Role of Ti 3d carriers in mediating the ferromagnetism of Co:TiO2 anatase thin films. Physical Review Letters 106, 047602 (2011). prl.aps.org/abstract/PRL/v106/i4/e047602

add to favorites email to friend print save as pdf

Related Stories

Creating a pure spin current in graphene

Feb 07, 2011

(PhysOrg.com) -- Graphene is a material that has the potential for a number of future applications. Scientists are interested in using graphene for quantum computing and also as a replacement for electronics. However, in ...

Studying Magnetic Interface Ferromagnetism

Jun 28, 2007

The development of various magnetic-based devices, such as read-heads found inside your computer, depends on the discovery and improvement of new materials and magnetic effects.

Vortices get organized

Feb 25, 2011

Exotic entities that arrange into a crystalline structure at near room-temperature could lead to a new approach to electronic memory.

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 22, 2011
This could be utilized as the attractive force medium in claytronics.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.