Hot off the press: Nanoscale Gutenberg-style printing

Apr 15, 2011
Hot off the press: Nanoscale Gutenberg-style printing

(PhysOrg.com) -- When Gutenberg developed the principles of modern book printing, books became available to the masses. Hoping to bring technology capable of mass production to the nanometer scale, Udo Bach and this team of scientists at Monash University and the Lawrence Berkeley National Laboratory have developed a nanoprinting process modeled on Gutenberg’s printing method. Their goal is the simple, inexpensive production of nanotechnological components for solar cells, biosensors, and other electronic systems. As the researchers report in the journal Angewandte Chemie, their "ink" consists of gold nanoparticles, and the specific bonding between DNA molecules ensures its transfer to the substrate.

Nanopatterns with extremely high resolution are not difficult to produce with today’s technology. However, the methods used so far are analogous those used to produce the hand-written books of the era before Gutenberg; they are too slow and work-intensive for commercial fabrication. “New nanoprinting techniques offer an interesting solution,” says Bach. Along with co-workers, he has developed a process that works with a reusable “printing plate”.

The printing plate is a silicon wafer—like those used for the production of computer chips—that has been coated with a photoresist and covered with a mask. The wafer is then exposed to an electron beam (electron beam lithography). In the areas exposed to the beam, the photoresist is removed, exposing the wafer for etching. The wafer is then coated with gold. When the photoresist layer is removed, the gold only sticks to the etched areas. Polyethylene glycol chains are then bound specifically to the gold through sulfur–hydrogen groups. The chains have positively charged amino groups at their ends. The completed printing plate is then dipped into the “ink”, a solution of gold nanoparticles coated with negatively charged DNA molecules. Electrostatic attraction causes the DNA to stick to the amino groups, binding the gold nanoparticles to the gold-patterned areas of the printing plate.

The “paper” is a silicon wafer coated with a whisper-thin gold film and a layer of DNA. These DNA strands are complementary to those on the gold nanoparticles, with which they pair up to form double strands. This type of bond is stronger than the electrostatic attraction between the DNA and the . When the “paper” is pressed onto the “printing plate” and then removed, the nanoparticles from the ink remain stuck to the “paper” in the desired pattern. The “printing plate” can be cleaned and reused multiple times. Says Bach: “Our results demonstrate that it is possible to produce affordable printed elements based on nanoparticles.”

Explore further: New material steals oxygen from the air

More information: Udo Bach, Gutenberg-Style Printing of Self-Assembled Nanoparticle Arrays: Electrostatic Nanoparticle Immobilization and DNA-Mediated Transfer, Angewandte Chemie International Edition 2011, 50, No. 19, Permalink to the article: dx.doi.org/10.1002/anie.201006991

Related Stories

Microfabrication: The light approach

Mar 04, 2011

Materials that conduct electricity but which are also transparent to light are important for electronic displays, cameras and solar cells. The industry’s standard material for these applications is indium ...

Mussel adhesive for DNA chips

Dec 24, 2010

Mussels are true masters of adhesion. Whether on the wood of a pier, the metal of a ship’s hull, rocks, or to their own kind, they stick to everything. Researchers led by Philip B. Messersmith at Northwestern ...

Universal ink for microcontact printing

Jun 01, 2006

"Printing" on the micrometer scale is the technology of the future for the production of the electronic components used for such things as flat-screen monitors or (bio)sensors.

Recommended for you

New material steals oxygen from the air

2 hours ago

Researchers from the University of Southern Denmark have synthesized crystalline materials that can bind and store oxygen in high concentrations. Just one spoon of the substance is enough to absorb all the ...

Neutral self-assembling peptide hydrogel

6 hours ago

Self-assembling peptides are characterized by a stable β-sheet structure and are known to undergo self-assembly into nanofibers that could further form a hydrogel. Self-assembling peptide hydrogels have ...

Scientists make droplets move on their own

Sep 29, 2014

Droplets are simple spheres of fluid, not normally considered capable of doing anything on their own. But now researchers have made droplets of alcohol move through water. In the future, such moving droplets may deliver medicines, ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

stealthc
not rated yet Apr 15, 2011
which doesn't work with just any substance, you need gold for this. not the breakthrough the headline made it seem to be.
pauljpease
5 / 5 (1) Apr 17, 2011
luckily, you only need tiny amounts of gold