Some Antarctic ice is forming from bottom

Mar 03, 2011
Researchers endured extreme wind and cold at a high-elevation field camp near the center of the East Antarctic ice sheet. Credit: Michael Studinger/AGAP

Scientists working in the remotest part of Antarctica have discovered that liquid water locked deep under the continent's coat of ice regularly thaws and refreezes to the bottom, creating as much as half the thickness of the ice in places, and actively modifying its structure. The finding, which turns common perceptions of glacial formation upside down, could reshape scientists' understanding of how the ice sheet expands and moves, and how it might react to warming climate, they say. The study appears in this week's early online edition of the leading journal Science; it is part of a six-nation study of the invisible Gamburtsev Mountains, which lie buried under as much as two miles of ice.

Ice sheets are well known to grow from the top as snow falls and builds up annual layers over thousands of years, but scientists until recently have known little about the processes going on far below. In 2006, researchers in the current study showed that lakes of underlie widespread parts of Antarctica. In 2008-2009, they mounted an expedition using geophysical instruments to create 3-D images of the Gamburtsevs, a range larger than the European Alps. The expedition also made detailed images of the overlying ice, and subglacial water.

"We usually think of ice sheets like cakes--one layer at a time added from the top. This is like someone injected a layer of frosting at the bottom--a really thick layer," said Robin Bell, a geophysicist at Columbia University's Lamont-Doherty Earth Observatory and a project co-leader. "Water has always been known to be important to ice sheet dynamics, but mostly as a lubricant. As ice sheets change, we want to predict how they will change. Our results show that models must include water beneath." The Antarctic ice sheet holds enough fresh water to raise ocean levels 200 feet; if even a small part of it were to melt into the ocean, it could put major coastal cities under water.

Radar image shows the Gamburtsev Mountains (bottom) overlain by the ice sheet, which has been deformed by a bulge of refrozen ice (center). Credit: Courtesy Bell et al., 2011

The scientists found that refrozen ice makes up 24% of the ice sheet base around Dome A, a 13,800-foot-high plateau that forms the high point of the East , at 3.8 million square miles roughly the size of the continental United States. In places, slightly more than half the ice thickness appears to have originated from the bottom, not the top. Here, rates of refreezing are greater than surface accumulation rates. The researchers suggest that such refreezing has been going on since East Antarctica became encased in a large ice sheet some 32 million years ago. They may never know for sure: the ice is always moving from the deep interior toward the coast, so ice formed millions of years ago, and the evidence it would carry, is long gone.

Deeply buried ice may melt because overlying layers insulate the base, hemming in heat created there by friction, or radiating naturally from underlying rock. When the ice melts, refreezing may take place in multiple ways, the researchers say. If it collects along mountain ridges and heads of valleys, where the ice is thinner, low temperatures penetrating from the surface may refreeze it. In other cases, water gets squeezed up valley walls, and changes pressure rapidly. In the depths, water remains liquid even when it is below the normal freezing point, due to pressure exerted on it. But once moved up to an area of less pressure, such supercooled water can freeze almost instantly. Images produced by the researchers show that the refreezing deforms the ice sheet upward.

Scientists flew geophysical instruments over a California-size part of the East Antarctic ice sheet in order to image what lies below. Credit: Michael Studinger/Lamont-Doherty Earth Observatory

"When we first saw these structures in the field, we thought they looked like beehives and were worried they were an error in the data," Bell said. "As they were seen on many lines, it became clear that they were real. We did not think that water moving through ancient river valleys beneath more than one mile of ice would change the basic structure of the ice sheet."

Because the ice is in motion, understanding how it forms and deforms at the base is critical to understanding how the sheets will move, particularly in response to climate changes, researchers say. "It's an extremely important observation for us because this is potentially lifting the very oldest ice off the bed," said Jeff Severinghaus, a geologist at Scripps Institution of Oceanography in San Diego who was not involved in the study. He said it could either mean older ice is better preserved – or, it could "make it harder to interpret the record, if it's shuffled like a deck of cards."

From November 2008 to January 2009, the researchers did fieldwork around a California-size part of Dome A. Using aircraft equipped with ice penetrating radars, laser ranging systems, gravity meters and magnetometers, they flew low-altitude transects back and forth over the ice to draw 3-D images of what lay beneath. The aim was to understand how the mountains arose, and to study the connections between the peaks, the ice sheet, and subglacial lakes. They were also hunting for likely spots where future coring may retrieve the oldest ice. The work took place near the Southern Pole of Inaccessibility, the point farthest away from any ocean, and much harder to reach than the South Pole itself. They lived in isolated field camps, enduring high winds and temperatures ranging down to minus 40 degrees C.

"Understanding these interactions is critical for the search for the oldest ice and also to better comprehend subglacial environments and ice sheet dynamics," said Fausto Ferraccioli, a scientist with the British Antarctic Survey who also helped lead the project. "Incorporating these processes into models will enable more accurate predictions of response to global warming and its impact on future sea-level rise."

The researchers now will look into how the refreezing process acts along the margins of ice sheets, where the most visible change is occurring in Antarctica. Based on their data, a Chinese team also hopes to drill deep into Dome A in the next two or three years to remove cores that would trace long-ago climate shifts. They hope to find more than a million years old.

Explore further: Magnitude-7.2 earthquake shakes Mexican capital

More information: Project website:
www.ldeo.columbia.edu/res/pi/gambit/

Related Stories

Greenland and Antarctic ice sheet melting, rate unknown

Feb 16, 2009

The Greenland and Antarctica ice sheets are melting, but the amounts that will melt and the time it will take are still unknown, according to Richard Alley, Evan Pugh professor of geosciences, Penn State.

New structure found deep within West Antarctic Ice Sheet

Sep 23, 2004

Ice sheet more susceptible to change than previously thought Scientists have found a remarkable new structure deep within the West Antarctic Ice Sheet which suggests that the whole ice sheet is more susceptible to future ch ...

Origin of Alps-size Antarctic mountain range unknown

Oct 15, 2008

A U.S.-led, multinational team of scientists this month will investigate one of the Earth's last major unexplored places, using sophisticated airborne radar and ground-based seismologic tools to virtually peel away more than ...

Recommended for you

Magnitude-7.2 earthquake shakes Mexican capital

Apr 18, 2014

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

GSwift7
3 / 5 (2) Mar 03, 2011
wow, this is a big deal. This may be one of the biggest new discoveries about ice sheet dynamics in a long time. I wonder if they have looked at whether this process might happen in Greenland as well?

If they are able to confirm it, this could be Nobel material.
Howhot
1 / 5 (1) Mar 09, 2011
Greenland ice is on top of land. I think that is a little different.

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...