Typical stress response for algae influences photosynthetic productivity

Jan 27, 2011

Typical research on blue-green algae, or cyanobacteria, often focuses on pampered conditions that result in a fast, high yield, but such conditions bear little resemblance to what these bacteria face in nature. Scientists from Pacific Northwest National Laboratory (PNNL), Washington University in St. Louis, The Hebrew University of Jerusalem, and Texas Tech University conducted a large-scale analysis of an alga called Synechocystis 6803 under 33 environmental conditions.

The scientists discovered that, regardless of the type of stress or duration, the cyanobacterium immediately activates alternate pathways to acquire carbon and nitrogen, needed for survival. Analysis of these dynamic changes in the proteome provides insights into cellular adaptations to environmental perturbations.

By using this type of large-scale approach, scientists can gain insights into how these important bacteria function in nature. are responsible for nearly half of the necessary for sustaining life on earth. They've been studied by hundreds of laboratories over decades, yet many aspects of their physiology remain poorly understood. Better understanding of cyanobacteria will allow engineers to use them more effectively in the generation of renewable, carbon-neutral biofuels.

The team has discovered how these critical bacteria use many proteins and how they respond to varying natural conditions. In this study, they applied large-scale mass spectrometers toward a global proteomic analysis—a capability at EMSL, a Department of Energy scientific user facility at PNNL, to produce a high-quality dataset that covers 53 percent of the predicted . This is the most comprehensive protein based functional and quantitative analysis for any photosynthetic organism to date.

Explore further: Study provides new insights into the genetics of drug-resistant fungal infections

More information: Wegener KM, et al. 2010. "Global Proteomics Reveal an Atypical Strategy for Carbon/Nitrogen Assimilation by a Cyanobacterium Under Diverse Environmental Perturbations." Molecular & Cellular Proteomics 9(12):2678-2689. DOI:10.1074/mcp.M110.000109

Related Stories

Plague proteome reveals proteins linked to infection

Nov 22, 2006

Recreating growth conditions in flea carriers and mammal hosts, Pacific Northwest National Laboratory scientists have uncovered 176 proteins and likely proteins in the plague-bacterium Yersinia pestis whose numbers rise ...

Scientists discover first new chlorophyll in 60 years

Aug 20, 2010

(PhysOrg.com) -- University of Sydney scientists have stumbled upon the first new chlorophyll to be discovered in over 60 years and have published their findings in the international journal Science.

Googling brain proteins with 3-D goggles

Feb 15, 2007

The Allen Brain Atlas, a genome-wide map of the mouse brain on the Internet, has been hailed as “Google of the brain.” The atlas now has a companion or the brain’s working molecules, a sort of pop-up ...

Sequenced genomes make good neighbors

Jan 10, 2011

(PhysOrg.com) -- To study the proteomes of organisms, a first step often involves using sequenced genomes in conjunction with mass spectrometric measurements for global protein identifications. But, how do ...

Recommended for you

Waiting to harvest after a rain enhances food safety

8 hours ago

To protect consumers from foodborne illness, produce farmers should wait 24 hours after a rain or irrigating their fields to harvest crops, according to new research published in the journal Applied and Environmental Microbiology.

A triangular protein pump

13 hours ago

Ludwig Maximilian University of Munich researchers have elucidated the structure of a molecular machine with an atypical triangular shape that is involved in peroxisome biogenesis, and characterized its conformation ...

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.