UNL biochemist probes protein for disease clues

November 22, 2010
Mark Wilson

(PhysOrg.com) -- Scientists believe they have discovered a common link between such disparate diseases as Parkinson's disease and some types of cancer. Studying these links could lead to advances in combating these and other human diseases.

University of Nebraska-Lincoln Mark Wilson studies a protein believed to play a critical role in causing mitochondrial abnormalities leading to Parkinson's and some cancers. He's expanding his research with a recent $1.35 million grant from the National Institutes of Health's National Institute of General Medical Sciences.

Scientists now know that inheritable forms of Parkinson's disease develop from mutations in genes found in the , the "cellular power plants" that perform a variety of functions within an organism's cells. For example, a genetic mutation that alters the DJ-1 protein disrupts the mitochondria's response to oxidative stress, an imbalance in molecular reactions that can damage cells and lead to diseases such as Parkinson's, Alzheimer's and ALS.

Scientists know that DJ-1 is an essential protein for maintaining the balance between helping cells survive oxidative stress and initiating when cancer would otherwise form. But many questions remain about how it works and the effect of mutations.

Wilson uses X-ray crystallography to determine DJ-1's three-dimensional structure in its normal and mutated forms to better understand how the protein contributes to neurodegenerative diseases.

"The hope is that it will give us the ability to biochemically characterize the pathways that go amiss in these rare forms of Parkinson's," Wilson said. "Cancer and Parkinson's disease don't obviously have a lot in common, but they do have this protein in common. Our hope is that this protein connects a variety of serious human diseases to a common ."

Greater understanding of that pathway and its molecular components may one day lead to treatments against and neurodegenerative diseases, he said.

Explore further: Researchers develop marker that identifies energy-producing centers in nerve cells

Related Stories

Scientists locate disease switches

July 17, 2009

A team of scientists from the University of Copenhagen and the Max Planck Institute in Germany, has identified no less than 3,600 molecular switches in the human body. These switches, which regulate protein functions, may ...

New pathway to Parkinson's and Alzheimer's diseases

July 29, 2010

Although their genetic underpinnings differ, Alzheimer's disease, Parkinson's disease and Huntington's disease are all characterized by the untimely death of brain cells. What triggers cell death in the brain? According to ...

Yeast holds clues to Parkinson's disease

September 9, 2010

Yeast could be a powerful ally in the discovery of new therapeutic drugs to treat Parkinson's disease says a scientist presenting his work at the Society for General Microbiology's autumn meeting in Nottingham today.

Recommended for you

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.