UNL biochemist probes protein for disease clues

Nov 22, 2010
Mark Wilson

(PhysOrg.com) -- Scientists believe they have discovered a common link between such disparate diseases as Parkinson's disease and some types of cancer. Studying these links could lead to advances in combating these and other human diseases.

University of Nebraska-Lincoln Mark Wilson studies a protein believed to play a critical role in causing mitochondrial abnormalities leading to Parkinson's and some cancers. He's expanding his research with a recent $1.35 million grant from the National Institutes of Health's National Institute of General Medical Sciences.

Scientists now know that inheritable forms of Parkinson's disease develop from mutations in genes found in the , the "cellular power plants" that perform a variety of functions within an organism's cells. For example, a genetic mutation that alters the DJ-1 protein disrupts the mitochondria's response to oxidative stress, an imbalance in molecular reactions that can damage cells and lead to diseases such as Parkinson's, Alzheimer's and ALS.

Scientists know that DJ-1 is an essential protein for maintaining the balance between helping cells survive oxidative stress and initiating when cancer would otherwise form. But many questions remain about how it works and the effect of mutations.

Wilson uses X-ray crystallography to determine DJ-1's three-dimensional structure in its normal and mutated forms to better understand how the protein contributes to neurodegenerative diseases.

"The hope is that it will give us the ability to biochemically characterize the pathways that go amiss in these rare forms of Parkinson's," Wilson said. "Cancer and Parkinson's disease don't obviously have a lot in common, but they do have this protein in common. Our hope is that this protein connects a variety of serious human diseases to a common ."

Greater understanding of that pathway and its molecular components may one day lead to treatments against and neurodegenerative diseases, he said.

Explore further: Video: How did life on Earth begin?

add to favorites email to friend print save as pdf

Related Stories

Yeast holds clues to Parkinson's disease

Sep 09, 2010

Yeast could be a powerful ally in the discovery of new therapeutic drugs to treat Parkinson's disease says a scientist presenting his work at the Society for General Microbiology's autumn meeting in Nottingham today.

New pathway to Parkinson's and Alzheimer's diseases

Jul 29, 2010

Although their genetic underpinnings differ, Alzheimer's disease, Parkinson's disease and Huntington's disease are all characterized by the untimely death of brain cells. What triggers cell death in the brain? According to ...

Scientists locate disease switches

Jul 17, 2009

A team of scientists from the University of Copenhagen and the Max Planck Institute in Germany, has identified no less than 3,600 molecular switches in the human body. These switches, which regulate protein functions, may ...

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

Sep 15, 2014

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

User comments : 0