Mutations that cause Parkinson's disease prevent cells from destroying defective mitochondria

May 10, 2010, Rockefeller University
Parkin (green) promotes the turnover of damaged mitochondria (red, left), but defective organelles accumulate near the nucleus if Parkin lacks its ubiquitin ligase activity (right). Credit: Lee, J.-Y., et al. 2010. J. Cell Biol. doi:10.1083/jcb.201001039.

Mutations that cause Parkinson's disease prevent cells from destroying defective mitochondria, according to a study published online May 10 in the Journal of Cell Biology.

Defects in the ubiquitin ligase Parkin are linked to early-onset cases of this neurodegenerative disorder. The wild-type protein promotes the removal of impaired mitochondria by a specialized version of the autophagy pathway called mitophagy, delivering mitochondria to the lysosomes for degradation. Mitochondria are often dysfunctional in Parkinson's disease, but how Parkin stimulates mitophagy and whether the pathway goes wrong during is unknown.

A team of researchers led by Tso-Pang Yao (Duke University) found that cells expressing mutant forms of Parkin failed to clear their mitochondria after the organelles were damaged. Different blocked mitophagy at distinct steps: mitochondria accumulated in the perinuclear region of cells expressing Parkin lacking its ubiquitin ligase activity, for example. The researchers found that ubiquitination of defective mitochondria by Parkin normally recruits the autophagy proteins HDAC6 and p62 to clear these mitochondrial aggregates.

Depolymerizing microtubules or inhibiting the dynein motor protein blocked aggregation and prevented mitochondrial turnover. Transport to the perinuclear region was also blocked by a mutation in Parkin, indicating that this stage of mitophagy is also regulated by the protein.

The clearance of defective mitochondria is therefore similar to the removal of damaged proteins, another autophagic process that goes wrong in Parkinson's disease resulting in the accumulation of aggregates. Both pathways rely on microtubules, HDAC6, and p62, says Yao, providing a common link between the two main features of the .

Explore further: New insight into Parkinson's disease

More information: Lee, J.-Y., et al. 2010. J. Cell Biol. doi:10.1083/jcb.201001039

Related Stories

New insight into Parkinson's disease

April 19, 2010

New research provides crucial insight into the pathogenic mechanisms of Parkinson's disease (PD), a prevalent neurodegenerative disorder. The study appears in the April 19 issue of the Journal of Cell Biology.

When cells run out of fuel

August 24, 2009

Parkinson's disease is caused by the degeneration of neurons in the midbrain. The mechanisms leading to the loss of these neurons, however, are largely unknown. Recent research revealed that about ten per cent of cases are ...

New clues about mitochondrial 'growth spurts'

March 2, 2009

Mitochondria are restless, continually merging and splitting. But contrary to conventional wisdom, the size of these organelles depends on more than fusion and fission, as Berman et al. show. Mitochondrial growth and degradation ...

Recommended for you

Scientists solve mystery shrouding oldest animal fossils

March 25, 2019

Scientists from The Australian National University (ANU) have discovered that 558 million-year-old Dickinsonia fossils do not reveal all of the features of the earliest known animals, which potentially had mouths and guts.

Earth's deep mantle flows dynamically

March 25, 2019

As ancient ocean floors plunge over 1,000 km into the Earth's deep interior, they cause hot rock in the lower mantle to flow much more dynamically than previously thought, finds a new UCL-led study.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.