Microorganisms offer lessons for gamblers and the rest of us

Oct 12, 2010

When it comes to gambling, many people rely on game theory, a branch of applied mathematics that attempts to measure the choices of others to inform their own decisions. It's used in economics, politics, medicine -- and, of course, Las Vegas. But recent findings from a Tel Aviv University researcher suggest that we may put ourselves on the winning side if we look to bacteria instead.

According to Prof. Eshel Ben-Jacob of Tel Aviv University's School of Physics and Astronomy, current can't account for bacteria's natural decision-making abilities -- it's just too simplistic. Understanding bacteria's reactions to stressful and hazardous conditions may improve decision-making processes in any human arena from everyday life to political elections.

In a recent article published in the (PNAS), Prof. Ben-Jacob and his fellow researchers outline how decisions made by communities of bacteria trump game theory. "When human beings make a decision," he says, "they think they're being rational. We now understand that they're influenced by superfluous 'noise,' such as their cognitive state and the influence of others." Bacteria, he explains, are both simpler and more sophisticated -- they can more effectively control this superfluous noise and make group decisions that contribute to the well-being of the entire bacterial colony.

Looking out for the whole

Bacteria live in complex colonies that can be 100 times as numerous as the population of Earth. Under stressful circumstances, bacteria have demonstrated a capacity to assess the noisy and around them, filter out what's relevant and what's not, and make decisions that ensure the survival of the colony as a whole.

For example, one bacterial response to starvation or poisoning is that a fraction of the cells "sporulate," enclosing their DNA in a capsule or spore as the mother cell dies. This, says Prof. Ben-Jacob, ensures the survival of the colony -- when the threat is removed, the spores can germinate and the colony grows again.

During this process, the bacteria "choose" whether or not to enter a state called "competence," in which bacteria change their membranes to more easily absorb substances from their neighboring, dying cells. As a result, they recover more quickly when the stress is gone. According to Prof. Ben-Jacob, it's a difficult choice -- in fact, a gamble. The decision to go into a state of competence only pays off if most of the cells decide to sporulate.

Indeed, observations show that only about 10% of cells decide to go into competence. So why don't all bacteria attempt to save themselves? Bacteria don't hide their intentions from their peers in the colony, he explains -- they don't lie or prevaricate, but communicate their intentions by sending chemical messages among themselves. Individual bacteria weigh their decisions carefully, taking into account the stress they are facing, the situation of their peers, the statistics of how many cells are sporulating and how many are choosing competence.

Facing tough choices

There are many times in life when humans face similar decisions, says Prof. Ben-Jacob. One example is choosing whether or not to be inoculated during flu season. Do you take the risk of the side effects and get inoculated, or do you trust that most of the people around you will get the vaccine and risk possible illness, sparing you both the disease and the side effects from the vaccine? How do politicians make decisions on key issues, such as national debt, that can harm and benefit society?

There will always be "noise" surrounding making, says Prof. Ben-Jacob, but like bacteria, we can use this information to make an action plan. Though react individually, he notes, there is co-ordination between the cells. It's important to make choices that both benefit us as individuals but also as a group.

"Sometimes we need the restraint of the community," says Prof. Ben-Jacob. "As individuals we need to set some boundaries, and not just boost ourselves at the expense of others."

Explore further: Mycologist promotes agarikon as a possibility to counter growing antibiotic resistance

Related Stories

Can cannibalism fight infections?

Feb 02, 2009

Whenever humans create a new antibiotic, deadly bacteria can counter it by turning into new, indestructible super-bugs. That's why bacterial infection is the number one killer in hospitals today. But new research ...

Bacteria wouldn't opt for a swine flu shot

Dec 16, 2009

Bacteria inhabited our planet for more than 4 billion years before humans showed up, and they'll probably outlive us by as many eons more. That suggests they may have something to teach us.

Bacteria offer insights into human decision making

Dec 08, 2009

(PhysOrg.com) -- Scientists studying how bacteria under stress collectively weigh and initiate different survival strategies say they have gained new insights into how humans make strategic decisions that ...

Stress and fear can affect cancer's recurrence

Feb 27, 2008

After the surgical removal of a malignant tumor, the chance that cancer will re-appear in a different location of the body remains high. But new research from Tel Aviv University, in a bold new field called Psychoneuroimmunology, ...

Are sacrificial bacteria altruistic or just unlucky?

Apr 15, 2008

An investigation of the genes that govern spore formation in the bacteria B. subtilis shows that chance plays a significant role in determining which of the microbes sacrifice themselves for the colony and which go on to ...

Recommended for you

YEATS protein potential therapeutic target for cancer

Oct 23, 2014

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

Oct 23, 2014

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 0