Researchers develop alternative to gold in electrical applications

Oct 13, 2010
A scanning electron microscope image from an etched section through one of the new alloys. The magnified image inset shows rods of copper 300 nm in diameter emerging from a copper-lanthanum matrix. Image provided by Mark Aindow

(PhysOrg.com) -- Researchers at the University of Connecticut, partnering with United Technologies Research Center (East Hartford, CT) engineers, have modeled and developed new classes of alloy materials for use in electronic applications that will reduce reliance on costly gold and other precious metals.

The research appears online in the October 12th issue of the journal .

With the price of currently hovering around $1,340 per ounce, manufacturers across the globe, including Connecticut’s United Technologies Corporation (UTC), are scrambling for alternatives to the costly noble metals that are widely used in electronic applications, including gold, platinum, rhodium, palladium and silver. What makes these metals attractive is their combination of excellent conductivity paired with resistance to oxidation and corrosion. Finding less costly but equally durable and effective alternatives is an important aim.

Mark Aindow and S. Pamir Alpay, UConn professors of materials science and engineering, and Joseph Mantese, a UTRC Fellow, have developed new classes of materials that behave much like gold and its counterparts when exposed to the oxidizing environments that degrade traditional base metals. Their research was funded by a grant from the U.S. Army Research Office.

The team has investigated nickel, copper and iron – inexpensive materials that may offer promise. Based on their research, they have laid out the theory and demonstrated experimentally the methodology for improving the electrical contact resistance of these base metals. Aindow said, “We used a combination of theoretical analysis to select the appropriate constituents, and materials engineering at the atomic level to create designer materials.”

The researchers synthesized various alloys, using inexpensive base metals. Higher conductivity native oxide scales can be achieved in these alloys through one of three processes: doping to enhance carrier concentration, inducing mixed oxidation states to give electron/polaron hopping, and/or phase separation for conducting pathways.

Their work has demonstrated an improvement in contact resistance of up to one-million-fold over that for pure base metals, so that base metal contacts can now be prepared with contact properties near those of pure gold.

Explore further: Synthesis of a new lean rare earth permanent magnetic compound superior to Nd2Fe14B

More information: M. Aindow et al., Base metal alloys with self-healing native conductive oxides for electrical contact materials, Appl. Phys. Lett. 97, 152103 (2010); doi:10.1063/1.3499369

Related Stories

Gold nanoparticles enrich every day products

May 05, 2010

(PhysOrg.com) -- Durable paint, water purification, faster computers, tougher shoe soles, and lighter and cheaper televisions are all possibilities now that a Queensland University of Technology (QUT) scientist has discovered ...

The nanoworld of corrosion

Feb 09, 2006

The effect of corrosion has an impact on about 3% of the world's Gross Domestic Product. From a positive point of view, however, chemical attack of metal surfaces may result into surface nano-structures with ...

Model simulates atomic processes in nanomaterials

Mar 01, 2007

Researchers from MIT, Georgia Institute of Technology and Ohio State University have developed a new computer modeling approach to study how materials behave under stress at the atomic level, offering insights that could ...

MIT thinks small to find safer metals

Feb 21, 2006

MIT researchers have devised a new method for shrinking the size of crystals to make safer metal alloys. The new materials could replace metal coatings such as chromium, which is dangerous for factory workers ...

Hybrid welding process developed

Dec 18, 2006

U.S. scientists say they've developed a hybrid process involving the use of a laser in friction-stir welding to extend the application to more materials.

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

9 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

9 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

11 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Nik_2213
not rated yet Oct 13, 2010
But will they grow dendrites ??
Shakescene21
not rated yet Oct 14, 2010
This is great technology, but the really intense focus should be on platinum and rhodium rather than gold.
Gold is expensive, but it's not that rare -- most gold is used in ingots, coins, and jewelry. Platinum is rarer than gold and is used mostly in important industrial and environmental applications.