Record measurement of extremely small magnetic fields

April 12, 2010
Record measurement of extremely small magnetic fields
QUANTOP laboratorie with laser light

Researchers at the research center QUANTOP at the Niels Bohr Institute at the University of Copenhagen (Denmark) have constructed an atomic magnetometer, which has achieved the highest sensitivity allowed by quantum mechanics. Sensitive magnetometers could be used to measure electrical activity in the human brain and heart. The results have been published in Physical Review Letters.

The ultimate sensitivity of any measurement is determined by the laws of . These laws, normally most noticeable at the , become relevant for larger objects as the sensitivity of measurements increase with the development of new technologies.

Atoms as magnetic sensors

Atoms have a fundamental property called spin, which makes the atoms act like small magnets that are sensitive to external magnetic fields and can be used as . But each of the atomic spins has a quantum uncertainty, which sets the fundamental limit on the smallest external magnetic fields that the atom can sense.

Conventional atomic magnetometers are usually built with a very large number of atoms, because the overall sensitivity of billions of atoms is much greater than that of a single atom. But on the other hand, it is much more difficult to reach the limit of sensitivity given by quantum mechanics.

Ultimate sensitivity

However, researchers at the QUANTOP Center have constructed an atomic with the ultimate sensitivity allowed by quantum mechanics.

“Moving towards the goal we had to ensure that our method made it possible to suppress not only sources of technical errors, such as fluctuations in the magnetic field due to public transportation, and so on, but also to eliminate a number of errors of pure quantum mechanical origin”, explains professor Eugene Polzik, Director of the QUANTOP Center at the Niels Bohr Institute.

From brains to explosives

As a result, the magnetometer can measure in a second a field, which is a hundred billion times weaker than the Earth’s magnetic field.

The magnetometer has a wide range of possible uses, because where there is an electric current, there is also a .

Measurements of magnetic fields can reveal information about the in the human brain and heart, the chemical identity of certain atoms, for example, explosives, or simply indicate the presence or absence of metal.

The new quantum magnetometer functions at room temperature, which makes it a good alternative to the expensive commercial superconducting magnetometers (the so-called ‘Squids’).

“Our quantum magnetometer functions at room temperature which makes it a good alternative to the expensive commercial superconducting magnometers (the so-called ‘Squids’). It has the same sensitivity with a cheaper and simpler instrument”, explains Eugene Polzik.

Explore further: Here come the nanoSQUIDs

More information: Paper: prl.aps.org/abstract/PRL/v104/i13/e133601

Related Stories

Here come the nanoSQUIDs

October 5, 2006

A French scientific team says it has developed the first nanoSQUID -- or superconducting quantum interference device -- for measuring magnetic fields.

'NMR on a chip' features magnetic mini-sensor

February 19, 2008

A super-sensitive mini-sensor developed at the National Institute of Standards and Technology can detect nuclear magnetic resonance (NMR) in tiny samples of fluids flowing through a novel microchip. The prototype chip device, ...

A step closer to an ultra precise atomic clock

April 16, 2009

A clock that is so precise that it loses only a second every 300 million years - this is the result of new research in ultra cold atoms. The international collaboration is comprised of researchers from the University of Colorado, ...

Recommended for you

Scientists glimpse Einstein's gravitational waves (Update)

February 11, 2016

In a landmark discovery for physics and astronomy, scientists said Thursday they have glimpsed the first direct evidence of gravitational waves, ripples in the fabric of space-time that Albert Einstein predicted a century ...

A 'magical' space-time ripple that wasn't believed, at first

February 11, 2016

The wave that made history snuck up on them. David Shoemaker will never forget the date—September 14, 2015—when he woke up to a message alerting him that an underground detector had spotted a 1.3-billion-year-old ripple ...

Sneezing produces complex fluid cascade, not a simple spray

February 11, 2016

Here's some incentive to cover your mouth the next time you sneeze: New high-speed videos captured by MIT researchers show that as a person sneezes, they launch a sheet of fluid that balloons, then breaks apart in long filaments ...

Optical rogue waves reveal insight into real ones

February 10, 2016

(Phys.org)—Rogue waves in the middle of the ocean often appear out of nowhere and vanish just as quickly. But in their short lifetimes, they can generate walls of water 15 to 30 meters (50 to 100 feet) high, crashing down ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

axemaster
not rated yet Apr 13, 2010
"As a result, the magnetometer can measure in a second a field, which is a hundred billion times weaker than the Earth’s magnetic field."

A second? That's very slow... I hope they can improve the speed, or it will be of limited usefulness.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.