Here come the nanoSQUIDs

October 5, 2006

A French scientific team says it has developed the first nanoSQUID -- or superconducting quantum interference device -- for measuring magnetic fields.

Wolfgang Wernsdorfer and colleagues at the Louis Neel Laboratory in Grenoble, France, say a SQUID consists of a loop of metal that is cooled to near absolute zero so that an electrical current can flow through it without meeting resistance. For such a loop to work as a SQUID it also needs to contain two "junctions" that act as obstacles to such a supercurrent.

The nanoSQUID built by Wernsdorfer is said to be unique in that it uses carbon nanotubes to form the obstacles.

Those hollow tubes of carbon atoms -- with diameters of one-billionth of a meter -- are about 10 times narrower than the smallest junctions used in previous SQUIDs. In addition to measuring magnetic fields, the scientists say their nanoSQUIDs could also be used to explore many fundamental phenomena in quantum physics.

The research appears in the inaugural issue of the journal Nature Nanotechnology.

Copyright 2006 by United Press International

Explore further: The first non-trivial atom circuit: Progress towards an atom SQUID

Related Stories

Recommended for you

Using gold nanoparticles to destroy viruses

December 18, 2017

EPFL researchers have created nanoparticles that attract viruses and, using the pressure resulting from the binding process, destroy them. This revolutionary approach could lead to the development of broad-spectrum antiviral ...

Cheap, sustainable battery made from tree bark tannins

December 18, 2017

(Phys.org)—Tannins may be best known for their presence in red wine and tea, but in a new study researchers have demonstrated for the first time that tannins from tree bark can also serve as battery cathode materials. As ...

Nanotubes go with the flow to penetrate brain tissue

December 18, 2017

Rice University researchers have invented a device that uses fast-moving fluids to insert flexible, conductive carbon nanotube fibers into the brain, where they can help record the actions of neurons.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.