Golden pairs: Catalytic dimers of gold atoms make ethylene from methane

January 19, 2010

( -- Ethylene (ethene, CH2=CH2) is a primary feedstock for chemical industry, and particularly for the production of plastics like polyethylene and polystyrene. Ethylene is currently made by the steam cracking of fossil fuel fractions.

A possible alternative to this may be the production of ethylene from (CH4), because although fossil fuel supplies are slowly declining, methane is still found in giant natural gas deposits. The problem is that the carbon-hydrogen bonds in methane are very difficult to break. It thus usually takes extreme conditions to induce the carbon in methane to form bonds with other carbon atoms. Furthermore, this reaction usually produces a mixture.

Scientists working with Thorsten M. Bernhardt at the University of Ulm (Germany) and Uzi Landman at the Georgia Institute of Technology (Atlanta, USA), have now found a process by which methane can be selectively converted into ethylene at low pressures and temperatures. Free gold dimers catalyze the reaction, the researchers report in the journal .

“Methane activation, meaning the ‘cracking’ of C-H bonds, is a very complex process,” explain the scientists, “which must be understood at the molecular level before practically applicable catalytic processes can be developed.” To investigate this, the team carried out experiments with different catalytic metal clusters (aggregates of a few ) as model systems. In tests with particles made of a few gold atoms, they found that positively charged particles made of two gold atoms (Au2+) selectively convert methane into ethylene in the gas phase.

Through experiments in which intermediates of the reaction were “trapped”, as well as model computations, the researchers were able to formulate a reaction mechanism for this catalytic cycle. Each gold atom of the gold dimers binds to a methane molecule; hydrogen is split off and the two carbon atoms form a single bond to each other. This ethylene precursor initially remains bound to one of the gold atoms, and the freed gold atom binds to a new methane molecule. In the last step, another methane molecule displaces the ethylene precursor from its spot on the gold atom and ethylene is released. At this point the reaction cycle can begin again.

“Both the activation of the carbon-hydrogen bonds of the methane and the subsequent splitting off of the molecule require cooperative action of several atoms bound to the dimer,” Berhnardt and Landman explain further details of the mechanism. “Our insights are not only of fundamental interest, but may also be of practical use.”

Explore further: Just How Significant Is Methane On Titan?

More information: Thorsten M. Bernhardt, Methane Activation and Catalytic Ethylene Formation on Free Au2+ Ions, Angewandte Chemie International Edition 2010, 49, No. 5, 980-983, Permalink:

Related Stories

Just How Significant Is Methane On Titan?

September 12, 2005

Titan's second most abundant constituent, methane, is critical to the maintenance of an earth-like nitrogen atmosphere on this satellite. Without methane, Titan's nitrogen would condense, leaving behind a puny amount in ...

New Direction for Hydrogen Atom Transfers

October 19, 2005

In the annals of chemistry, there are many examples of hydrogen atoms moving from metals to carbon atoms. But no one has ever directly observed the reverse reaction — hydrogen atoms moving from carbon to a metal — until ...

Converting Nitrogen to a More Useful Form

January 9, 2007

Nitrogen-containing organic compounds are important products as well as intermediates for many pharmaceuticals, agrochemicals, and chemicals used in electronics. Air contains plenty of nitrogen, but it is in a form that cannot ...

New Ways to Use Biomass

September 22, 2008

( -- Alternatives to fossil fuels and natural gas as carbon sources and fuel are in demand. Biomass could play a more significant part in the future. Researchers in the USA and China have now developed a new catalyst ...

Novel Chemistry for Ethylene and Tin

September 29, 2009

( -- New work by chemists at UC Davis shows that ethylene, a gas that is important both as a hormone that controls fruit ripening and as a raw material in industrial chemistry, can bind reversibly to tin atoms. ...

Recommended for you

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...

Better fluorescent lighting through physics

October 8, 2015

General Electric (GE), Lawrence Livermore National Laboratory (LLNL) and Oak Ridge National Laboratory (ORNL) have created new kinds of fluorescent lighting phosphors that use far less rare-earth elements than current technology.

Porous material holds promise for prosthetics, robots

October 8, 2015

Cornell researchers have developed a new lightweight and stretchable material with the consistency of memory foam that has potential for use in prosthetic body parts, artificial organs and soft robotics. The foam is unique ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jan 20, 2010
Very interesting. Also for every molecule of Ethylene that is created this process would presumably create 2 molecules of H2. Which can be used as a clean fuel.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.