Synchrotrons play role in Nobel Prize research

Synchrotrons played a key role in the research that won Brian Kobilka, a professor and chair of Molecular and Cellular Physiology at the Stanford School of Medicine, the 2012 Nobel Prize in chemistry on Wednesday.

Aggregation of proteins in cells may result in diseases

Changes in the structure of proteins can lead to various diseases, such as Alzheimer's, type 2 diabetes and corneal dystrophy. A research team from Aarhus University has now discovered how a particular protein can damage ...

Predicting protein binding sites on DNA

In silico prediction of protein folding has the potential to reveal the specificity of a given protein sequence for DNA. Such methods are particularly promising as they could open the road to the rational design of novel ...

A new approach for solving protein structures

(Phys.org)—Using synchrotron x-ray beams to solve the molecular structures of proteins and other large biological molecules has yielded many advances in medicine, such as drug therapies for cancer. Improvements in the techniques ...

Venomous snail key behind therapeutic molecules

Can a painkiller be re-engineered to get a closer look at how proteins bind to communication channels? Researchers across Europe are using state-of-the-art computing techniques to re-engineer a painkiller from the XEP-018 ...

Algal proteins light the way

Channelrhodopsins (ChRs) are remarkable proteins that respond to specific wavelengths of light by allowing ions to cross the cell membrane, a mechanism that makes them useful for manipulating ion-driven processes in the brain. ...

Discarded data may hold the key to a sharper view of molecules

(Phys.org) -- There's nothing like a new pair of eyeglasses to bring fine details into sharp relief. For scientists who study the large molecules of life from proteins to DNA, the equivalent of new lenses have come in the ...

A new tool to reveal structure of proteins

A new method to reveal the structure of proteins could help researchers understand biological molecules – both those involved in causing disease and those performing critical functions in healthy cells.

Fastest X-ray images of tiny biological crystals

(PhysOrg.com) -- An international research team headed by DESY scientists from the Center for Free-Electron Laser Science (CFEL) in Hamburg, Germany, has recorded the shortest X-ray exposure of a protein crystal ever achieved. ...

page 7 from 8